图像生成——使用DCGAN生成卡通肖像

2023-11-05 23:21

本文主要是介绍图像生成——使用DCGAN生成卡通肖像,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、需要注意的几点:

1、生成器的网络和判别器的网络均不含池化层。

2、判别器的最后一层网络输出使用sigmoid激活,生成器的最后一层网络输出使用tanh激活。

3、生成器和判别器的网络结果呈对称形式如:生成器的第一层的卷积核大小,步长,输入通道,输出通道核判别器的最后一层卷积核大小,步长一致,输出通道,输入通道大小一致。

image

(上图所示的是生成器,判别器的网络刚好对称,从后往前)

4、卷积核使用偶数大小的效果比使用奇数大小的卷积核效果好。

5、使用转置卷积进行上采样。

6、训练是可以每训练两轮生成器训练一次判别器(原因是判别器能力优于生成 器)。

二、代码部分:

import torch
import torch.nn as nn
from torch.utils.data import DataLoader,Dataset
from torchvision.utils import save_image
import numpy as np
import os
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as pltclass Sampling_data(Dataset):def __init__(self,img_path):self.file_names = []self.transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.5,0.5,0.5],std=[0.5,0.5,0.5])])for file in os.listdir(img_path):file_name = os.path.join(img_path,file)self.file_names.append(file_name)def __len__(self):return len(self.file_names)def __getitem__(self, item):file = self.file_names[item]img_array = Image.open(file)xs = self.transform(img_array)return xsclass Dnet(nn.Module):def __init__(self):super(Dnet, self).__init__()self.conv1 = nn.Sequential(nn.Conv2d(in_channels=3, out_channels=64, kernel_size=5,stride=3,padding=1,bias=False),# nn.BatchNorm2d(64)nn.LeakyReLU(0.2, inplace=True))self.conv2 = nn.Sequential(nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=2,padding=1, bias=False),nn.BatchNorm2d(128),nn.LeakyReLU(0.2, inplace=True))self.conv3 = nn.Sequential(nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.LeakyReLU(0.2, inplace=True))self.conv4 = nn.Sequential(nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(512),nn.LeakyReLU(0.2, inplace=True))self.conv5 = nn.Sequential(nn.Conv2d(in_channels=512, out_channels=1, kernel_size=4, stride=1, padding=0, bias=False),nn.Sigmoid())def forward(self, x):y = self.conv1(x)y = self.conv2(y)y = self.conv3(y)y = self.conv4(y)y = self.conv5(y)return yclass Gnet(nn.Module):def __init__(self):super(Gnet, self).__init__()self.conv1 = nn.Sequential(nn.ConvTranspose2d(in_channels=128, out_channels=512, kernel_size=4, stride=1, padding=0, bias=False),nn.BatchNorm2d(512),nn.ReLU(inplace=True))self.conv2 = nn.Sequential(nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True))self.conv3 = nn.Sequential(nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.ReLU(inplace=True))self.conv4 = nn.Sequential(nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True))self.conv5 = nn.Sequential(nn.ConvTranspose2d(in_channels=64, out_channels=3, kernel_size=5, stride=3, padding=1, bias=False),nn.Tanh())def forward(self, x):y = self.conv1(x)y = self.conv2(y)y = self.conv3(y)y = self.conv4(y)y = self.conv5(y)return yif __name__ == '__main__':save_params_path = r"params"save_img_path = r"./img"batchsize = 100img_data = r"E:\Learnn\cartoonfaces"            #img_data为卡通人物的路径num_epoch = 500random_num = 128save_real_img_path = os.path.join(save_img_path,"real_img")save_fake_img_path = os.path.join(save_img_path,"fake_img")save_dparam_path = os.path.join(save_params_path, "d_self_net.pth")save_gparam_path = os.path.join(save_params_path, "g_self_net.pth")for path in [save_img_path, save_params_path, save_real_img_path, save_fake_img_path]:if not os.path.exists(path):os.mkdir(path)data_loader = DataLoader(Sampling_data(img_data), batch_size=batchsize, shuffle=True, num_workers=4, drop_last=True)if torch.cuda.is_available():device = torch.device("cuda")else:device = torch.device("cpu")g_net = Gnet().to(device)d_net = Dnet().to(device)g_net.train()d_net.train()if os.path.exists(save_dparam_path and save_gparam_path):  # 两个网络两个参数d_net.load_state_dict(torch.load(save_dparam_path))g_net.load_state_dict(torch.load(save_gparam_path))print("两个参数已经加载成功!!!")else:print("NO Params!!!")loss_fn = nn.BCELoss()d_optimizer = torch.optim.Adam(d_net.parameters(), lr=0.0002, betas=(0.5, 0.999))g_optimizer = torch.optim.Adam(g_net.parameters(), lr=0.0002, betas=(0.5, 0.999))for epoch in range(num_epoch):for i, img in enumerate(data_loader):real_img = img.to(device)real_label = torch.ones(batchsize).view(-1, 1, 1, 1).to(device)fake_label = torch.zeros(batchsize).view(-1, 1, 1, 1).to(device)real_out = d_net(real_img)d_loss_real = loss_fn(real_out, real_label)rand_n = torch.randn(batchsize, random_num, 1, 1).to(device=device)fake_img = g_net(rand_n)fake_out = d_net(fake_img)d_loss_fake = loss_fn(fake_out, fake_label)d_loss = d_loss_real + d_loss_faked_optimizer.zero_grad()d_loss.backward()d_optimizer.step()rand_n1 = torch.randn(batchsize, random_num, 1, 1).to(device=device)fake_img = g_net(rand_n1)output = d_net(fake_img)g_loss = loss_fn(output, real_label)g_optimizer.zero_grad()g_loss.backward()g_optimizer.step()if i%10 == 0:print(real_out.data.mean(),fake_out.data.mean())fake_imgs = (0.5*(fake_img.cpu().data+1)).clamp(0, 1)real_imgs = (0.5 * (real_img.cpu().data + 1)).clamp(0, 1)save_image(fake_imgs, os.path.join(save_fake_img_path,"{}_fake_imgs.jpg".format(epoch+1)),nrow=10,normalize=True,scale_each=True)save_image(real_imgs, os.path.join(save_real_img_path,"{}_real_imgs.jpg".format(epoch+1)),nrow=10,normalize=True,scale_each=True)torch.save(g_net.state_dict(), save_gparam_path)torch.save(d_net.state_dict(), save_dparam_path)

三、效果展示:

1)生成的图像:

74_fake_imgs.jpg

2)原始图像:

74_real_imgs.jpg

 

这篇关于图像生成——使用DCGAN生成卡通肖像的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/ssunshining/article/details/110179756
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/353132

相关文章

使用Java将实体类转换为JSON并输出到控制台的完整过程

《使用Java将实体类转换为JSON并输出到控制台的完整过程》在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用JSON格式,用Java将实体类转换为J... 在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用j

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

PyQt6中QMainWindow组件的使用详解

《PyQt6中QMainWindow组件的使用详解》QMainWindow是PyQt6中用于构建桌面应用程序的基础组件,本文主要介绍了PyQt6中QMainWindow组件的使用,具有一定的参考价值,... 目录1. QMainWindow 组php件概述2. 使用 QMainWindow3. QMainW

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

关于Mybatis和JDBC的使用及区别

《关于Mybatis和JDBC的使用及区别》:本文主要介绍关于Mybatis和JDBC的使用及区别,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、JDBC1.1、流程1.2、优缺点2、MyBATis2.1、执行流程2.2、使用2.3、实现方式1、XML配置文件