python是如何操作HDF5文件的,看完这篇文章你就全懂了

2023-11-05 22:10
文章标签 python 操作 篇文章 hdf5

本文主要是介绍python是如何操作HDF5文件的,看完这篇文章你就全懂了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

HDF

Hierarchical Data Format,又称HDF5

  • 在深度学习中,通常会使用巨量的数据或图片来训练网络。对于如此大的数据集,如果对于每张图片都单独从硬盘读取、预处理、之后再送入网络进行训练、验证或是测试,这样效率太低。如果将这些图片都放入一个文件中再进行处理效率会更高。有多种数据模型和库可完成这种操作,如HDF5和TFRecord。

  • 一个HDF5文件是一种存放两类对象的容器:dataset和group. Dataset是类似于数组的数据集,而group是类似文件夹一样的容器,存放dataset和其他group。在使用h5py的时候需要牢记一句话:groups类比词典,dataset类比Numpy中的数组。

  1. img

  • HDF5 文件一般以 .h5 或者 .hdf5 作为后缀名,需要专门的软件才能打开预览文件的内容。HDF5 文件结构中有 2 primary objects: Groups 和 Datasets。
  • 每个 dataset 可以分成两部分: 原始数据 (raw) data values 和 元数据 metadata (a set of data that describes and gives information about other data => raw data)。对于每一个dataset 而言,除了数据本身之外,这个数据集还会有很多的属性 attribute,。在hdf5中,还同时支持存储数据集对应的属性信息,所有的属性信息的集合就叫做metadata.安装:

pip install h5py

对于数据集需要: 先创建h5文件,再去读h5文件 将dataset放在group里利用group进行层次嵌套.

1 f = filename.file得到文件的根目录
2 f.create_group("...../group_name")
3 f.create_dataset("...../dataset_name")

一般:

  1. HDF5格式文件保存的是 : Model weights(字典,没有顺序)

  2. JSON 和 YAML 格式文件保存的是: Model structure(顺序靠json描述)

  3. h5格式:可以同时保存weights和structure

利用numpy数据初始化

1 #还可以直接用np数组给dataset初始化,此时data就涵盖了shape和dtype,即shape = data.shape,....
2 arr = np.arange(100)
3 dset = f.create_dataset("/mydataset1",data = arr)#i4:32位的integer[-2^31,2^31]

数据处理上的用途

利用python的文件操作及数组等方式将训练数据及测试数据集标签,按数据划分方法,将文件名写入到python数组,最终将这些处理好的数组写入hdf5格式文件给dataset初始化.

示例

 1 import h5py2 import numpy as np3 coco = h5py.File("D:/annot_coco.h5","r")#coco.name == / 根节点4 # print(coco)5 # print(coco["bndbox"])6 #只是遍历直接相连的一级节点7 for name in coco:8     # 本身就是字符串9     print(coco[name])
10     print(coco[name][:2])
11 ​
12 # def printname(name):
13 #     print(name)
14 #
15 #
16 #
17 # #遍历整个coco下的节点
18 # coco.visit(printname)
19 #dataset.attrs
20 #dataset对象可以有自己的属性, 但所有属性数据的长度加起来不能超过64K, 包括属性名字.
21 ​
22 dset.attrs['length'] = 100
23 dset.attrs['name'] = 'This is a dataset'
24 for attr in dset.attrs:
25     print attr, ":", dset.attrs[attr]
26 length : 100
27 name : This is a dataset

注意:

1 imgname_array = coco["imgname"][:]#不一样的,这是标准用法,还是要先取到全部,再去索引,否则结果维度不一样
2 # imgname_ = coco["imgname"][:1]#轴不会减少
3 # print(imgname_array.shape)
4 # print(imgname_)#[1,16]
5 # print(type(imgname_dataset))
6 # print(type(imgname_array))
7 img = imgname_array[0]

写字符串到h5文件

1 test_h5 = h5py.File("D:/test.h5","w")
2 imgname = np.fromstring('000000262145.jpg',dtype=np.uint8).astype('float64')#str_imgname------>float64
3 test_h5 .create_dataset('imgname', data=imgname)#变成f8之后就可以直接往h5中写了
4 test_h5.close()
5 """
6 最后得出来的矩阵长度是字符串的长度。---1个字符串的长度就是对应编码的h5向量的长度
7 如果想将多个字符串拼成一个大的numpy矩阵,写到h5文件中,必须先将字符串转换成相同长度。
8 通常的做法是在字符串后面补上\x00。
9 """

从h5数据读出字符串格式

1 test_h5 = h5py.File("D:/test.h5","r")
2 img = test_h5['imgname'][:]
3 img = img.astype(np.uint8).tostring().decode('ascii')
4 print(img)
5 test_h5.close()

这篇关于python是如何操作HDF5文件的,看完这篇文章你就全懂了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352794

相关文章

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环