AD9371 官方例程 NO-OS 主函数 headless 梳理(一)

2023-11-05 21:44

本文主要是介绍AD9371 官方例程 NO-OS 主函数 headless 梳理(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AD9371 系列快速入口

AD9371+ZCU102 移植到 ZCU106 : AD9371 官方例程构建及单音信号收发

ad9371_tx_jesd -->util_ad9371_xcvr接口映射: AD9371 官方例程之 tx_jesd 与 xcvr接口映射

AD9371 官方例程 时钟间的关系与生成 : AD9371 官方例程HDL详解之JESD204B TX侧时钟生成(一)

JESD204B相关IP端口信号 : AD9371 官方例程HDL JESD204B相关IP端口信号

裸机程序配置 AD9528、AD9371、FPGA IP: AD9371 官方例程裸机SW 和 HDL配置概述(一)

裸机程序配置 AD9528、AD9371、FPGA IP: AD9371 官方例程裸机SW 和 HDL配置概述(二)

裸机程序配置 AD9528、AD9371、FPGA IP: AD9371 官方例程裸机SW 和 HDL配置概述(三)

文章目录

  • 前言
  • 一、xilinx platform
  • 二、AD9528
  • 三、CLKGEN IP
  • 四、JESD 链路层初始化
  • 五、ADXCVR 物理层初始化
  • 六、AD9371 初始化步骤
    • 6.1 复位
    • 6.2 MYKONOS 初始化
    • 6.3 检查CLKPLL的锁定状态
    • 6.4 执行MCS
    • 6.5 初始化ARM处理器、加载ARM二进制文件、读取AD9371 ARM版本
    • 6.6 设置RF PLL频率、检查RF PLL锁定状态
    • 6.7 设置AD9371 GPIO
    • 6.8 设置 RX、Obs 和 SNIFFER 手动增益 和 TX 衰减
    • 6.9 运行初始化校准,等待初始化校准完成
    • 6.10 (可选,例程未使用)使用PA进行初始化外部LOL校准
  • 未完,见下一节


前言

官方例程主函数需要配置和初始化 AD9528、AD9371、FPGA IP,打开DDS 或者通过DMA 搬运发送和接收数据

一、xilinx platform

打开 指令和数据 Cache ,初始化 platform(包含 SPI 和 GPIO)

	Xil_ICacheEnable();/* Enable the instruction cache. */Xil_DCacheEnable();ret = platform_init();if (ret != 0) {printf("error: platform_init() failed\n");goto error_0;}

二、AD9528

通过AD9528复位引脚,复位 AD9528
通过 VCXO REFA outFrequency_Hz[1] ,得到 PLL1 PLL2 output 0-13 和 sysref 各个配置参数,存入 clockAD9528_device
通过 SPI 初始化 AD9528 的 PLL1 PLL2 output 和 sysref

	error = AD9528_resetDevice(clockAD9528_device);if (error != ADIERR_OK) {printf("AD9528_resetDevice() failed\n");error = ADIERR_FAILED;goto error_1;}error = AD9528_initDeviceDataStruct(clockAD9528_device,clockAD9528_device->pll1Settings->vcxo_Frequency_Hz,clockAD9528_device->pll1Settings->refA_Frequency_Hz,clockAD9528_device->outputSettings->outFrequency_Hz[1]);if (error != ADIERR_OK) {printf("AD9528_initDeviceDataStruct() failed\n");error = ADIERR_FAILED;goto error_1;}/* Initialize the AD9528 by writing all SPI registers */error = AD9528_initialize(clockAD9528_device);if (error != ADIERR_OK)printf("WARNING: AD9528_initialize() issues. Possible cause: REF_CLK not connected.\n");

三、CLKGEN IP

通过axi_clkgen_init 赋值给 rx_clkgen 等
通过参考时钟和需要生成目标时钟,得到配置参数,配置到 IP的MMCM中,利用 MMCM 得到所需时钟,详见第二部分

	status = axi_clkgen_init(&rx_clkgen, &rx_clkgen_init);status = axi_clkgen_init(&tx_clkgen, &tx_clkgen_init);status = axi_clkgen_init(&rx_os_clkgen, &rx_os_clkgen_init);status = axi_clkgen_set_rate(rx_clkgen, rx_div40_rate_hz);status = axi_clkgen_set_rate(tx_clkgen, tx_div40_rate_hz);status = axi_clkgen_set_rate(rx_os_clkgen, rx_os_div40_rate_hz);

利用axi_clkgen_calc_params(clkgen, clkgen->parent_rate, rate, &d, &m, &dout); 计算MMCM中的 M、 D、 O

将 dout ,也就是 O0 写入 MMCM_REG_CLKOUT0_1 和 MMCM_REG_CLKOUT0_2 (0x08 和 0x09,OUT0的DRP地址)
axi_clkgen_calc_clk_params(dout, &low, &high, &edge, &nocount);
axi_clkgen_mmcm_write(clkgen, MMCM_REG_CLKOUT0_1, (high << 6) | low, 0xefff);
axi_clkgen_mmcm_write(clkgen, MMCM_REG_CLKOUT0_2, (edge << 7) | (nocount << 6),0x03ff)

得到的 D 和 M 类似 O0,写入相应的寄存器中

在这里插入图片描述

在这里插入图片描述
参考 XAPP888

四、JESD 链路层初始化

初始化 tx_jesd 、rx_jesd 等,并把 octets_per_multiframe 和 octets_per_frame 配置给IP核,octets_per_multiframe 除以 4,得到 up_cfg_beats_per_multiframe ,在链路层的LMFC中使用

	status = axi_jesd204_rx_init(&rx_jesd, &rx_jesd_init);status = axi_jesd204_tx_init(&tx_jesd, &tx_jesd_init);status = axi_jesd204_rx_init(&rx_os_jesd, &rx_os_jesd_init);

五、ADXCVR 物理层初始化

初始化 tx_adxcvr、rx_adxcvr 等,配置物理层 sys_clk_sel、 out_clk_sel 、LPM_DFE_N 等参数,通过 adxcvr_clk_set_rate(xcvr, xcvr->lane_rate_khz, xcvr->ref_rate_khz) 计算并配置(通过DRP) QPLL 、CPLL、 t/rx_out_div 和 clk25M ,得到正确的 lane rate

	status = adxcvr_init(&rx_adxcvr, &rx_adxcvr_init);status = adxcvr_init(&tx_adxcvr, &tx_adxcvr_init);status = adxcvr_init(&rx_os_adxcvr, &rx_os_adxcvr_init);

六、AD9371 初始化步骤

6.1 复位

通过 GPIO 复位 AD9371,为初始化做准备

	 MYKONOS_resetDevice(&mykDevice)) 

6.2 MYKONOS 初始化

根据有效的 Rx/Tx/ORx/sniffer profiles,配置AD9371的 deserializer 、 Tx1/Tx2 deframer, serializer, Rx1/Rx2 framer, 和 ORx framer,设置 clock PLL 和 digital clocks(MYKONOS_initDigitalClocks),

	 MYKONOS_initialize(&mykDevice)) 

6.3 检查CLKPLL的锁定状态

调用MYKONOS_checkPllLockStatus并使用用户定义的代码执行CLKPLL的锁定检查

     MYKONOS_checkPllsLockStatus(&mykDevice,&pllLockStatus)

6.4 执行MCS

当使用多个收发器或甚至只有一个收发器时,需要 Tx 和 Rx(obs)JESD204B数据路径之间确定性延迟,所有JESD204B通道同步在一起以满足确定性延迟要求,此功能应在所有收发器初始化后运行。

通过SPI 控制AD9528 发送 SYSREF 脉冲,发送SYSREF脉冲后,再次调用MYKONOS_enableMultichipSync 函数,将enableMcs参数设置为0,读取MCS状态

1 使用Mykonos_Initialize 初始化系统中的所有Mykonos
2 使用enableMcs=1 ,运行 MYKONOS_enableMultichipSync
3 发送至少3个SYSREF脉冲
4 使用enableMcs=0,运行 MYKONOS_enableMultichipSync
5 加载ARM

     MYKONOS_enableMultichipSync(&mykDevice, 1,&mcsStatus)AD9528_requestSysref(clockAD9528_device, 1);AD9528_requestSysref(clockAD9528_device, 1);AD9528_requestSysref(clockAD9528_device, 1);MYKONOS_enableMultichipSync(&mykDevice, 0,&mcsStatus)

6.5 初始化ARM处理器、加载ARM二进制文件、读取AD9371 ARM版本

     MYKONOS_initArm(&mykDevice)MYKONOS_loadArmFromBinary(&mykDevice,&firmware_Mykonos_M3_bin[0], firmware_Mykonos_M3_bin_len)MYKONOS_getArmVersion(&mykDevice, &arm_major, &arm_minor, &arm_release, NULL)

6.6 设置RF PLL频率、检查RF PLL锁定状态

对使用的每个通道设置RF频率

     MYKONOS_setRfPllFrequency(&mykDevice, RX_PLL,mykDevice.rx->rxPllLoFrequency_Hz)) MYKONOS_setRfPllFrequency(&mykDevice, TX_PLL,mykDevice.tx->txPllLoFrequency_Hz))MYKONOS_setRfPllFrequency(&mykDevice, SNIFFER_PLL,mykDevice.obsRx->snifferPllLoFrequency_Hz))MYKONOS_checkPllsLockStatus(&mykDevice,&pllLockStatus)

6.7 设置AD9371 GPIO

根据所需的配置设置GPIO

	 mykGpioErr = MYKONOS_setRx1GainCtrlPin(&mykDevice, 0, 0, 0, 0, 0)mykGpioErr = MYKONOS_setRx2GainCtrlPin(&mykDevice, 0, 0, 0, 0, 0)mykGpioErr = MYKONOS_setTx1AttenCtrlPin(&mykDevice, 0, 0, 0, 0, 0)mykGpioErr = MYKONOS_setTx2AttenCtrlPin(&mykDevice, 0, 0, 0, 0)mykGpioErr = MYKONOS_setupGpio(&mykDevice))

6.8 设置 RX、Obs 和 SNIFFER 手动增益 和 TX 衰减

     MYKONOS_setRx1ManualGain(&mykDevice, 255)MYKONOS_setObsRxManualGain(&mykDevice, OBS_RX1_TXLO, 255)MYKONOS_setObsRxManualGain(&mykDevice, OBS_SNIFFER_A, 255)MYKONOS_setTx1Attenuation(&mykDevice, 10000);MYKONOS_setTx2Attenuation(&mykDevice, 10000);

6.9 运行初始化校准,等待初始化校准完成

	uint32_t initCalMask = TX_BB_FILTER | ADC_TUNER | TIA_3DB_CORNER | DC_OFFSET |TX_ATTENUATION_DELAY | RX_GAIN_DELAY | FLASH_CAL |PATH_DELAY | TX_LO_LEAKAGE_INTERNAL | TX_QEC_INIT |LOOPBACK_RX_LO_DELAY | LOOPBACK_RX_RX_QEC_INIT |RX_LO_DELAY | RX_QEC_INIT ;*  calMask Bit | Calibration*  ------------|----------------------*       0      | Tx BB Filter*       1      | ADC Tuner*       2      | TIA 3dB Corner*       3      | DC Offset*       4      | Tx Attenuation Delay*       5      | Rx Gain Delay*       6      | Flash Cal*       7      | Path Delay*       8      | Tx LO Leakage Internal*       9      | Tx LO Leakage External*       10     | Tx QEC Init*       11     | LoopBack Rx LO Delay*       12     | LoopBack Rx Rx QEC Init*       13     | Rx LO Delay*       14     | Rx QEC Init*       15     | DPD Init*       16     | Tx CLGC (Closed Loop Gain Control)*       17     | Tx VSWR InitMYKONOS_runInitCals(&mykDevice,(initCalMask & ~TX_LO_LEAKAGE_EXTERNAL)MYKONOS_waitInitCals(&mykDevice, 60000, &errorFlag,&errorCode))

6.10 (可选,例程未使用)使用PA进行初始化外部LOL校准

确保此时PA已启用

	MYKONOS_runInitCals(&mykDevice,TX_LO_LEAKAGE_EXTERNAL)MYKONOS_waitInitCals(&mykDevice, 60000, &errorFlag, &errorCode)

未完,见下一节

这篇关于AD9371 官方例程 NO-OS 主函数 headless 梳理(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/352701

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.