ICIP 2019 开源论文 | 基于注意力网络的RGBD图像语义分割方法

2023-11-05 11:20

本文主要是介绍ICIP 2019 开源论文 | 基于注意力网络的RGBD图像语义分割方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640

作者丨赵磊

单位丨北京林业大学硕士生

研究方向丨语义分割


640?wx_fmt=png

本文已经被 ICIP 2019 (2019 IEEE International Conference on Image Processing) 接收,论文提出了一种全新的方法,基于时下流行的注意力机制,用于室内场景下的 RGBD 图像语义分割——通过利用图像深度信息,获得更好的语义分割效果,在包含 40 个类别的复杂室内场景通用数据集  NYUDv2 上取得了 SOTA 效果,mIoU 达到了 48.3%,论文主要的贡献在于注意力辅助模块和三平行分支的网络架构。

背景

当下图像语义分割的研究多关注室外场景,为自动驾驶等任务提供支持,而关注室内场景的研究较少,室内场景图像中目标亮度不均且在空间上存在较多的重叠,使用 RGBD 图像相较于 RGB 图像,能够取得较好的分割效果,RGBD  图像即 RGB 图像和深度(Depth)图像的结合,包括 RGB 三个通道和一个代表像素点与相机距离的深度通道共四个通道。

已有的 RGBD 图像语义分割方法有两种思路:一是利用两个编码器分别从 RGB 图像和深度图像中提取特征,结合之后进行上采样;二是在下采样阶段直接将两个特征融合处理。

前者不能将两种特征充分融合,后者没有考虑两种特征对最终结果的贡献程度,对于 RGB 图像信息和深度图像信息可能不充分对等的 RGBD 图像中,都不能取得较好的效果。为此论文提出了集成注意力机制的三平行分支架构的语义分割网络 ACNet,在通用数据集 NYUDv2 上取得了 SOTA 效果。

ACNet

ACNet 网络架构如下图所示:

640?wx_fmt=png

两个基于 ResNet 的独立分支分别用于 RGB 图像和深度图像的特征提取,根据每一层特征所包含的信息量设计的多个注意力辅助模块(ACM,Attention Complementary Modules)来平衡特征的分布,使网络更加关注图像的有效区域,一个同样基于 ResNet 的独立分支用于融合 RGB 特征和深度特征,最后经过多次上采样得到分割结果。ACNet 在保持原始 RGBD 特征流的同时充分利用了融合后的特征,最后分几步进行上采样,下面具体来看。

注意力辅助模块-ACM

640?wx_fmt=png


如上图所示,室内场景下的 RGBD 图像中,RGB 图像和深度图像的特征分布完全不同,为了使网络专注于目标的有效区域,论文设计了多个注意力辅助模块 ACMs,单个 ACM 结构如下图所示:

640?wx_fmt=png


ACM 基于通道注意力机制,假定输入特征图 640?wx_fmt=jpeg ,首先应用全局平均池化,得到输出640?wx_fmt=jpeg , 其中 C 代表通道数,H、W 分别表示特征图的高和宽,特征图的第 k 个通道可以表示为:

640

之后保持 Z 的通道数不变,通过一个点卷积 (1×1) 层,以挖掘通道之间的联系以确定其权重的分布,接着应用 sigmoid 激活方法得到640?wx_fmt=jpeg ,与输入特征图 A 进行一次叉乘得到外积 U,一个具有更多有效信息的特征图。该阶段的过程可以表示为:

640

特征融合架构

为了过早或过晚融合 RGB 特征和深度特征,ACNet 设计的第三个独立分支逐阶段的进行特征融合,充分利用浅层和深层的特征,不仅保留了两个独立分支的特征信息,还能有效利用融合特征。

实验

ACM的分析

以 layer2 时的特征图为例,可视化如下图所示:

640?wx_fmt=png


不同阶段的 ACM 得到的权重分布:

640?wx_fmt=png


实验结果

实验结果如下图所示,相比结构更为复杂的 RGBD 图像分割领域的 SOTA 模型 CFN(RefineNet-152),使用 ResNet-50 的 ACNet 在 NYUDv2 数据集 mIoU 更高,达到了48.3%,在 SUN-RGBD 数据集上取得了与 CFN 相当的实验精度。

640?wx_fmt=png


总结


论文提出用于室内场景下 RGBD 图像语义分割网络 ACNet,三分支架构和注意力辅助模块较好的平衡了 RGBD 图像中 RGB 图像特征和深度图像特征。 在 SLAM 领域之外,利用包 含更多的信息 RGBD 图像来提升语义分割效果的方式,同样可以用在室外场景分割中。 论文虽然相比 SOTA 模型更为精简,但是仍不能满足实时的要求,这也是论文提出的方法未来的一个优化方向。

参考文献


[1] https://arxiv.org/abs/1905.10089

[2] https://github.com/anheidelonghu/ACNet


640?

点击以下标题查看更多往期内容: 

640?#投 稿 通 道#

 让你的论文被更多人看到 


如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学习心得技术干货。我们的目的只有一个,让知识真正流动起来。

来稿标准:

• 稿件确系个人原创作品,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向) 

• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接 

• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志

? 投稿邮箱:

• 投稿邮箱:hr@paperweekly.site 

• 所有文章配图,请单独在附件中发送 

• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通

?

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

关于PaperWeekly

PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击「交流群」,小助手将把你带入 PaperWeekly 的交流群里。

▽ 点击 | 阅读原文 | 下载论文 & 源码

这篇关于ICIP 2019 开源论文 | 基于注意力网络的RGBD图像语义分割方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/349499

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi