25.3 matlab里面的10中优化方法介绍——Nelder-Mead法(matlab程序)

2023-11-05 05:30

本文主要是介绍25.3 matlab里面的10中优化方法介绍——Nelder-Mead法(matlab程序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 1.简述

      

fminsearch函数用来求解多维无约束的线性优化问题

用derivative-free的方法找到多变量无约束函数的最小值

   

语法

   x = fminsearch(fun,x0)

   x = fminsearch(fun,x0,options)

   [x,fval] = fminsearch(...)

   [x,fval,exitflag] = fminsearch(...)

   [x,fval,exitflag,output] = fminsearch(...)

    解释

    fminsearch能够从一个初始值开始,找到一个标量函数的最小值。通常被称为无约束非线性优化

    x = fminsearch(fun,x0) 从x0开始,找到函数fun中的局部最小值x,x0可以是标量,向量,矩阵。fun是一个函数句柄

    x = fminsearch(fun,x0,options) 以优化参数指定的结构最小化函数,可以用optimset函数定义这些参数。(见matlab help)

[x,fval] = fminsearch(...)返回在结果x出的目标函数的函数值

[x,fval,exitflag] = fminsearch(...) 返回exitflag值来表示fminsearch退出的条件:

1--函数找到结果x

0--函数最大功能评价次数达到,或者是迭代次数达到

-1--算法由外部函数结束

[x,fval,exitflag,output] = fminsearch(...) 返回一个结构输出output,包含最优化函数的信息:output.algorithm 使用的优化算法
output.funcCount 函式计算次数
output.iterations 迭代次数
output.message 退出信息

 

另外

fun是需要最小化的函数,他的输入为input,输出为标量f,目标函数在x上作出估计,函数可以为M文件的一个句柄函数(当是M文件时,用单引号括起文件名)

functionx = fminsearch(@myfun, x0)

这里function f = myfun(x)

f = ... 其自变量为x

或者直接写出

asx = fminsearch(@(x)sin(x^2), x0);

 

 

算法

fminsearch使用单纯型法,这是一种不会使用数值或者梯度分析的直接的方法

假如x的长度为n,那么会有n+1个顶点,两维空间中,单纯型是三角形,三维空间,他是一个锥形。搜索的每一步中,都会产生离当前单纯型比较近的点,在新的点上的函数值回合单纯型各个顶点上的值比较,一般都会有一个定点被替代,产生一个新的单纯型,重复步骤,直到单纯型的大小小于阈值。

限制

fminsearch可以处理不连续的问题,如果得不到全局最优,则其会得到局部最优

它只能最小化时数,复数并不在其能力范围之内,且f(x)的返回值也必须是时数,如果x为复数,则其必须分解为实部和虚部两部分。

 

我们可以稍微对进行一些变换,就可实现利用fminsearch进行参数估计。

 

 

2.代码

 

主程序:

%%   用Nelder-Mead方法求最优化解
f1203 = inline('x(1)*(x(1)-5-x(2))+x(2)*(x(2)-4)','x');
x0 = [0 4];
TolX = 1e-4; 
TolFun = 1e-9;
MaxIter = 100;
[xN,fN] = Opt_Nelder(f1203,x0,TolX,TolFun,MaxIter)
%取最小值点以及此处的最小值
[xF,fF] = fminsearch(f1203,x0) %用MATLAB内置函数fminsearch求解

 

子程序;

function [xo,fo] =Opt_Nelder(f,x0,TolX,TolFun,MaxIter)
%Nelder-Mead法用于多维变量的最优化问题,维数>=2.
N = length(x0);
if N == 1 %一维情况,用二次逼近计算
    [xo,fo] = Opt_Quadratic(f,x0,TolX,TolFun,MaxIter);
    return
end
S = eye(N);
for i = 1:N  %自变量维数大于2时,重复计算每个子平面的情况
    i1 = i + 1;
    if i1 > N
        i1 = 1;
    end
    abc = [x0; x0 + S(i,:); x0 + S(i1,:)]; %每一个定向子平面
    fabc = [feval(f,abc(1,:)); feval(f,abc(2,:)); feval(f,abc(3,:))];
    [x0,fo] = Nelder0(f,abc,fabc,TolX,TolFun,MaxIter);
    if N < 3  %二维情况不需重复
        break;
    end 
end
xo = x0;

3.运行结果

 

02fff0129228438c9b55644fdd68bd51.png

81fd1919a7e04582bfd517f654f1a701.png

 

 

这篇关于25.3 matlab里面的10中优化方法介绍——Nelder-Mead法(matlab程序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/347722

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变