张正友标定方法标定精度评估

2023-11-04 07:48

本文主要是介绍张正友标定方法标定精度评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘抄自matlab帮助文件

Evaluating the Accuracy of Single Camera Calibration- MATLAB & Simulink

Overview

Camera calibration is the process of estimating parameters of the camera using images of a special calibration pattern. The parameters include camera intrinsics, distortion coefficients, and camera extrinsics. Once you calibrate a camera, there are several ways to evaluate the accuracy of the estimated parameters:

  • Plot the relative locations of the camera and the calibration pattern

  • Calculate the reprojection errors

  • Calculate the parameter estimation errors

Calibrate the Camera

Estimate camera parameters using a set of images of a checkerboard calibration pattern.

% Create a set of calibration images.
images = imageDatastore(fullfile(toolboxdir('vision'), 'visiondata', ...'calibration', 'fishEye'));
imageFileNames = images.Files;% Detect calibration pattern.
[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);% Generate world coordinates of the corners of the squares.
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);% Calibrate the camera.
[params, ~, estimationErrors] = estimateCameraParameters(imagePoints, worldPoints);

Extrinsics

You can quickly discover obvious errors in your calibration by plotting relative locations of the camera and the calibration pattern. Use the showExtrinsics function to either plot the locations of the calibration pattern in the camera's coordinate system, or the locations of the camera in the pattern's coordinate system. Look for obvious problems, such as the pattern being behind the camera, or the camera being behind the pattern. Also check if a pattern is too far or too close to the camera.

figure;
showExtrinsics(params, 'CameraCentric');
figure;
showExtrinsics(params, 'PatternCentric');

Reprojection Errors

Reprojection errors provide a qualitative measure of accuracy. A reprojection error is the distance between a pattern keypoint detected in a calibration image, and a corresponding world point projected into the same image. TheshowReprojectionErrors function provides a useful visualization of the average reprojection error in each calibration image. If the overall mean reprojection error is too high, consider excluding the images with the highest error and recalibrating.

figure;
showReprojectionErrors(params);

Estimation Errors

Estimation errors represent the uncertainty of each estimated parameter. The estimateCameraParameters function optionally returns estimationErrors output, containing the standard error corresponding to each estimated camera parameter. The returned standard error  (in the same units as the corresponding parameter) can be used to calculate confidence intervals. For example +/-  corresponds to the 95% confidence interval. In other words, the probability that the actual value of a given parameter is within  of its estimate is 95%.

displayErrors(estimationErrors, params);
			Standard Errors of Estimated Camera Parameters----------------------------------------------Intrinsics
----------
Focal length (pixels):   [  714.1881 +/- 3.3220      710.3793 +/- 4.0580  ]
Principal point (pixels):[  563.6511 +/- 5.3966      355.7271 +/- 3.3039  ]
Radial distortion:       [   -0.3535 +/- 0.0091        0.1728 +/- 0.0488  ]Extrinsics
----------
Rotation vectors:[   -0.6096 +/- 0.0054       -0.1789 +/- 0.0073       -0.3835 +/- 0.0024  ][   -0.7283 +/- 0.0050       -0.0996 +/- 0.0072        0.1964 +/- 0.0027  ][   -0.6722 +/- 0.0051       -0.1444 +/- 0.0074       -0.1329 +/- 0.0026  ][   -0.5836 +/- 0.0056       -0.2901 +/- 0.0074       -0.5622 +/- 0.0025  ][   -0.3157 +/- 0.0065       -0.1441 +/- 0.0075       -0.1067 +/- 0.0011  ][   -0.7581 +/- 0.0052        0.1947 +/- 0.0072        0.4324 +/- 0.0030  ][   -0.7515 +/- 0.0051        0.0767 +/- 0.0072        0.2070 +/- 0.0029  ][   -0.6223 +/- 0.0053        0.0231 +/- 0.0073        0.3663 +/- 0.0024  ][    0.3443 +/- 0.0063       -0.2226 +/- 0.0073       -0.0437 +/- 0.0014  ]Translation vectors (mm):[ -146.0550 +/- 6.0391      -26.8706 +/- 3.7321      797.9021 +/- 3.9002  ][ -209.4397 +/- 6.9636      -59.4589 +/- 4.3581      921.8201 +/- 4.6295  ][ -129.3864 +/- 7.0906      -44.1054 +/- 4.3754      937.6825 +/- 4.4914  ][ -151.0086 +/- 6.6904      -27.3276 +/- 4.1343      884.2782 +/- 4.3926  ][ -174.9537 +/- 6.7056      -24.3522 +/- 4.1609      886.4963 +/- 4.6686  ][ -134.3140 +/- 7.8887     -103.5007 +/- 4.8928     1042.4549 +/- 4.8185  ][ -173.9888 +/- 7.6890      -73.1717 +/- 4.7816     1017.2382 +/- 4.8126  ][ -202.9489 +/- 7.4327      -87.9116 +/- 4.6485      983.6961 +/- 4.9072  ][ -319.8898 +/- 6.3213     -119.8920 +/- 4.0925      829.4588 +/- 4.9590  ]

Interpreting Principal Point Estimation Error

The principal point is the optical center of the camera, the point where the optical axis intersects the image plane. You can easily visualize and interpret the standard error of the estimated principal point. Plot an ellipse around the estimated principal point , whose radii are equal to 1.96 times the corresponding estimation errors. The ellipse represents the uncertainty region, which contains the actual principal point with 95% probability.

principalPoint = params.PrincipalPoint;
principalPointError = estimationErrors.IntrinsicsErrors.PrincipalPointError;fig = figure;
ax = axes('Parent', fig);
imshow(imageFileNames{1}, 'InitialMagnification', 60, 'Parent', ax);
hold(ax, 'on');% Plot the principal point.
plot(principalPoint(1), principalPoint(2), 'g+', 'Parent', ax);% Plot the ellipse representing the 95% confidence region.
halfRectSize = 1.96 * principalPointError;
rectangle('Position', [principalPoint-halfRectSize, 2 * halfRectSize], ...'Curvature', [1,1], 'EdgeColor', 'green', 'Parent', ax);legend('Estimated principal point');
title('Principal Point Uncertainty');
hold(ax, 'off');

Interpreting Translation Vectors Estimation Errors

You can also visualize the standard errors of the translation vectors. Each translation vector represents the translation from the pattern's coordinate system into the camera's coordinate system. Equivalently, each translation vector represents the location of the pattern's origin in the camera's coordinate system. You can plot the estimation errors of the translation vectors as ellipsoids representing uncertainty volumes for each pattern's location at 95% confidence level.

% Get translation vectors and corresponding errors.
vectors = params.TranslationVectors;
errors = 1.96 * estimationErrors.ExtrinsicsErrors.TranslationVectorsError;% Set up the figure.
fig = figure;
ax = axes('Parent', fig, 'CameraViewAngle', 5, 'CameraUpVector', [0, -1, 0], ...'CameraPosition', [-1500, -1000, -6000]);
hold on% Plot camera location.
plotCamera('Size', 40, 'AxesVisible', true);% Plot an ellipsoid showing 95% confidence volume of uncertainty of
% location of each checkerboard origin.
labelOffset = 10;
for i = 1:params.NumPatternsellipsoid(vectors(i,1), vectors(i,2), vectors(i,3), ...errors(i,1), errors(i,2), errors(i,3), 5)text(vectors(i,1) + labelOffset, vectors(i,2) + labelOffset, ...vectors(i,3) + labelOffset, num2str(i), ...'fontsize', 12, 'Color', 'r');
end
colormap('hot');
hold off% Set view properties.
xlim([-400, 200]);
zlim([-100, 1100]);xlabel('X (mm)');
ylabel('Y (mm)');
zlabel('Z (mm)');grid on
axis 'equal'
cameratoolbar('Show');
cameratoolbar('SetMode', 'orbit');
cameratoolbar('SetCoordSys', 'Y');
title('Translation Vectors Uncertainty');

How to Improve Calibration Accuracy

Whether or not a particular reprojection or estimation error is acceptable depends on the precision requirements of your particular application. However, if you have determined that your calibration accuracy is unacceptable, there are several ways to improve it:

  • Modify calibration settings. Try using 3 radial distortion coefficients, estimating tangential distortion, or the skew.

  • Take more calibration images. The pattern in the images must be in different 3D orientations, and it should be positioned such that you have keypoints in all parts of the field of view. In particular, it is very important to have keypoints close to the edges and the corners of the image in order to get a better estimate of the distortion coefficients.

  • Exclude images that have high reprojection errors and re-calibrate.

Summary

This example showed how to interpret camera calibration errors.

这篇关于张正友标定方法标定精度评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344299

相关文章

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A