张正友标定方法标定精度评估

2023-11-04 07:48

本文主要是介绍张正友标定方法标定精度评估,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘抄自matlab帮助文件

Evaluating the Accuracy of Single Camera Calibration- MATLAB & Simulink

Overview

Camera calibration is the process of estimating parameters of the camera using images of a special calibration pattern. The parameters include camera intrinsics, distortion coefficients, and camera extrinsics. Once you calibrate a camera, there are several ways to evaluate the accuracy of the estimated parameters:

  • Plot the relative locations of the camera and the calibration pattern

  • Calculate the reprojection errors

  • Calculate the parameter estimation errors

Calibrate the Camera

Estimate camera parameters using a set of images of a checkerboard calibration pattern.

% Create a set of calibration images.
images = imageDatastore(fullfile(toolboxdir('vision'), 'visiondata', ...'calibration', 'fishEye'));
imageFileNames = images.Files;% Detect calibration pattern.
[imagePoints, boardSize] = detectCheckerboardPoints(imageFileNames);% Generate world coordinates of the corners of the squares.
squareSize = 29; % millimeters
worldPoints = generateCheckerboardPoints(boardSize, squareSize);% Calibrate the camera.
[params, ~, estimationErrors] = estimateCameraParameters(imagePoints, worldPoints);

Extrinsics

You can quickly discover obvious errors in your calibration by plotting relative locations of the camera and the calibration pattern. Use the showExtrinsics function to either plot the locations of the calibration pattern in the camera's coordinate system, or the locations of the camera in the pattern's coordinate system. Look for obvious problems, such as the pattern being behind the camera, or the camera being behind the pattern. Also check if a pattern is too far or too close to the camera.

figure;
showExtrinsics(params, 'CameraCentric');
figure;
showExtrinsics(params, 'PatternCentric');

Reprojection Errors

Reprojection errors provide a qualitative measure of accuracy. A reprojection error is the distance between a pattern keypoint detected in a calibration image, and a corresponding world point projected into the same image. TheshowReprojectionErrors function provides a useful visualization of the average reprojection error in each calibration image. If the overall mean reprojection error is too high, consider excluding the images with the highest error and recalibrating.

figure;
showReprojectionErrors(params);

Estimation Errors

Estimation errors represent the uncertainty of each estimated parameter. The estimateCameraParameters function optionally returns estimationErrors output, containing the standard error corresponding to each estimated camera parameter. The returned standard error  (in the same units as the corresponding parameter) can be used to calculate confidence intervals. For example +/-  corresponds to the 95% confidence interval. In other words, the probability that the actual value of a given parameter is within  of its estimate is 95%.

displayErrors(estimationErrors, params);
			Standard Errors of Estimated Camera Parameters----------------------------------------------Intrinsics
----------
Focal length (pixels):   [  714.1881 +/- 3.3220      710.3793 +/- 4.0580  ]
Principal point (pixels):[  563.6511 +/- 5.3966      355.7271 +/- 3.3039  ]
Radial distortion:       [   -0.3535 +/- 0.0091        0.1728 +/- 0.0488  ]Extrinsics
----------
Rotation vectors:[   -0.6096 +/- 0.0054       -0.1789 +/- 0.0073       -0.3835 +/- 0.0024  ][   -0.7283 +/- 0.0050       -0.0996 +/- 0.0072        0.1964 +/- 0.0027  ][   -0.6722 +/- 0.0051       -0.1444 +/- 0.0074       -0.1329 +/- 0.0026  ][   -0.5836 +/- 0.0056       -0.2901 +/- 0.0074       -0.5622 +/- 0.0025  ][   -0.3157 +/- 0.0065       -0.1441 +/- 0.0075       -0.1067 +/- 0.0011  ][   -0.7581 +/- 0.0052        0.1947 +/- 0.0072        0.4324 +/- 0.0030  ][   -0.7515 +/- 0.0051        0.0767 +/- 0.0072        0.2070 +/- 0.0029  ][   -0.6223 +/- 0.0053        0.0231 +/- 0.0073        0.3663 +/- 0.0024  ][    0.3443 +/- 0.0063       -0.2226 +/- 0.0073       -0.0437 +/- 0.0014  ]Translation vectors (mm):[ -146.0550 +/- 6.0391      -26.8706 +/- 3.7321      797.9021 +/- 3.9002  ][ -209.4397 +/- 6.9636      -59.4589 +/- 4.3581      921.8201 +/- 4.6295  ][ -129.3864 +/- 7.0906      -44.1054 +/- 4.3754      937.6825 +/- 4.4914  ][ -151.0086 +/- 6.6904      -27.3276 +/- 4.1343      884.2782 +/- 4.3926  ][ -174.9537 +/- 6.7056      -24.3522 +/- 4.1609      886.4963 +/- 4.6686  ][ -134.3140 +/- 7.8887     -103.5007 +/- 4.8928     1042.4549 +/- 4.8185  ][ -173.9888 +/- 7.6890      -73.1717 +/- 4.7816     1017.2382 +/- 4.8126  ][ -202.9489 +/- 7.4327      -87.9116 +/- 4.6485      983.6961 +/- 4.9072  ][ -319.8898 +/- 6.3213     -119.8920 +/- 4.0925      829.4588 +/- 4.9590  ]

Interpreting Principal Point Estimation Error

The principal point is the optical center of the camera, the point where the optical axis intersects the image plane. You can easily visualize and interpret the standard error of the estimated principal point. Plot an ellipse around the estimated principal point , whose radii are equal to 1.96 times the corresponding estimation errors. The ellipse represents the uncertainty region, which contains the actual principal point with 95% probability.

principalPoint = params.PrincipalPoint;
principalPointError = estimationErrors.IntrinsicsErrors.PrincipalPointError;fig = figure;
ax = axes('Parent', fig);
imshow(imageFileNames{1}, 'InitialMagnification', 60, 'Parent', ax);
hold(ax, 'on');% Plot the principal point.
plot(principalPoint(1), principalPoint(2), 'g+', 'Parent', ax);% Plot the ellipse representing the 95% confidence region.
halfRectSize = 1.96 * principalPointError;
rectangle('Position', [principalPoint-halfRectSize, 2 * halfRectSize], ...'Curvature', [1,1], 'EdgeColor', 'green', 'Parent', ax);legend('Estimated principal point');
title('Principal Point Uncertainty');
hold(ax, 'off');

Interpreting Translation Vectors Estimation Errors

You can also visualize the standard errors of the translation vectors. Each translation vector represents the translation from the pattern's coordinate system into the camera's coordinate system. Equivalently, each translation vector represents the location of the pattern's origin in the camera's coordinate system. You can plot the estimation errors of the translation vectors as ellipsoids representing uncertainty volumes for each pattern's location at 95% confidence level.

% Get translation vectors and corresponding errors.
vectors = params.TranslationVectors;
errors = 1.96 * estimationErrors.ExtrinsicsErrors.TranslationVectorsError;% Set up the figure.
fig = figure;
ax = axes('Parent', fig, 'CameraViewAngle', 5, 'CameraUpVector', [0, -1, 0], ...'CameraPosition', [-1500, -1000, -6000]);
hold on% Plot camera location.
plotCamera('Size', 40, 'AxesVisible', true);% Plot an ellipsoid showing 95% confidence volume of uncertainty of
% location of each checkerboard origin.
labelOffset = 10;
for i = 1:params.NumPatternsellipsoid(vectors(i,1), vectors(i,2), vectors(i,3), ...errors(i,1), errors(i,2), errors(i,3), 5)text(vectors(i,1) + labelOffset, vectors(i,2) + labelOffset, ...vectors(i,3) + labelOffset, num2str(i), ...'fontsize', 12, 'Color', 'r');
end
colormap('hot');
hold off% Set view properties.
xlim([-400, 200]);
zlim([-100, 1100]);xlabel('X (mm)');
ylabel('Y (mm)');
zlabel('Z (mm)');grid on
axis 'equal'
cameratoolbar('Show');
cameratoolbar('SetMode', 'orbit');
cameratoolbar('SetCoordSys', 'Y');
title('Translation Vectors Uncertainty');

How to Improve Calibration Accuracy

Whether or not a particular reprojection or estimation error is acceptable depends on the precision requirements of your particular application. However, if you have determined that your calibration accuracy is unacceptable, there are several ways to improve it:

  • Modify calibration settings. Try using 3 radial distortion coefficients, estimating tangential distortion, or the skew.

  • Take more calibration images. The pattern in the images must be in different 3D orientations, and it should be positioned such that you have keypoints in all parts of the field of view. In particular, it is very important to have keypoints close to the edges and the corners of the image in order to get a better estimate of the distortion coefficients.

  • Exclude images that have high reprojection errors and re-calibrate.

Summary

This example showed how to interpret camera calibration errors.

这篇关于张正友标定方法标定精度评估的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/344299

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI