数论——贝祖定理证明及代码实现

2023-11-04 04:59

本文主要是介绍数论——贝祖定理证明及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先,引入贝祖定理的定义:

裴蜀定理(或贝祖定理)得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性不定方程(称为裴蜀等式):若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使ax+by=d成立。

它的一个重要推论是:a,b互质的充分必要条件是存在整数x,y使ax+by=1.

证明:

我们首先需要找出a和b的 gcd(a,b),在求解 gcd(a,b)时,可用欧几里得算法(辗转相除法)对此进行求解:

a=eval(input())
b=eval(input())
if a<b:
    t=a
    a=b
    b=t
    
a1=a
b1=b

while a%b!=0:  #判断a%b是否存在余数
    temp=a%b
    a=b
    b=temp 
    
print(b)

一、在求出a和b的最大公约数后,我们便得知d的数值。接下来,我们先讨论 a*x+b*y=k*d的问题

由于我们已经知道:

a % d == 0

b % d == 0

所以我们设a=k1*d ; b=k2*d,于是原式等同于 k1*d*x+k2*d*y=k*d,消去d,当k=k1*x+k2*y时即满足条件,由于5个值都为变量,可以认为设定成立,原式得证。

二、我们求证ax+by=d成立

由于a=k1*d ; b=k2*d,所以k1*d*x+k2*d*y=d,消去d,即得到k1*x+k2*y=1

其中 k1=a/d

        k2=b/d

此两数我们都可以解出,于是,我使用暴力法求解:在循环中,i++,当(i*k1)//k2==1时,跳出循环并输出

代码:

a=a1/b
b=b1/b
if b==1:#需要考虑是否第二个就为a和b的最大公约数
    i=1
    m=a-1
else:
    i=1
    while i:
        if (i*a)%b==1:#暴力求解正确的x值和y值
            break
        i=i+1
    m=(i*a)//b
print(i)
print(-m) #由于第一个代码中已经将a,b从大到小排列,所以第一个值必为正,第二个值必为负

最终总代码为:

import gmpy2

a=eval(input())
b=eval(input())
if a<b:
    t=a
    a=b
    b=t
    
a1=a
b1=b

while a%b!=0:
    temp=a%b
    a=b
    b=temp 
    
print(b)
a=a1/b
b=b1/b
if b==1:
    i=1
    m=a-1
else:
    i=1
    while i:
        if (i*a)%b==1:
            break
        i=i+1
    m=(i*a)//b
print(i)
print(-m)

这篇关于数论——贝祖定理证明及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/343392

相关文章

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求