[转]数轴上的随机游走问题

2023-11-03 23:10
文章标签 问题 随机 游走 数轴

本文主要是介绍[转]数轴上的随机游走问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数轴原点上有一个点,每步以1/2的概率向左或向右移动1个单位长度(下文称为一步随机游走),由此可以引出许多有趣的问题:

 

随机游走n步后距原点距离的期望

    对这个问题可以分情况讨论:n为奇数或n为偶数。

    当n为奇数时,设n=2k+1,k为非负整数,由于正反方向是对称的,下面考虑这个点坐标为正的情况:设点向正方向上走了n-i步,负方向上走了i步,i=0,1,2,...,k,则走法数显然为C(i,n)。这样所求期望值就等于

数轴上的随机游走问题
    其中左边乘以2是考虑向反方向“对称”移动的情况,C(i,n)/2^n为这个点恰好“正方向上走了n-i步,负方向上走了i步”的概率,n-2i是这个点坐标的绝对值。

    接下来就是一个简单的求值问题了:

数轴上的随机游走问题
    当n为偶数时,设n=2k,k为非负整数,同理可以列出表达式:

数轴上的随机游走问题
    和上面的表达式形式相同:i的取值同样是0,1,2,...,k,当i=k时出现了一点小不同:这个点仍然在原点,按道理不应该乘2,但此时n-2i=0,乘不乘2无所谓,于是就得到一样的式子。化简过程有些差别:

数轴上的随机游走问题

    由此得到通项公式:

数轴上的随机游走问题
    接下来,分析这个函数的数量级:先看右边这一部分

数轴上的随机游走问题
    可以用Stirling公式换掉这里的阶乘(等价无穷大),结果为:

数轴上的随机游走问题
    而k可以换为n/2。于是E_n的近似表达式:

数轴上的随机游走问题
    或者用下面的式子表示:

数轴上的随机游走问题
    由此可以得到,E_n大致与√n成正比。

    很多人试着做“硬币随机抛掷实验”,却发现最后正面次数距总次数的1/2越来越远,其实这并不奇怪:随着抛掷次数n的增加,绝对误差就可以用上面的E_n衡量,显然是越来越大的,但是相对误差大致和n的-1/2次方成正比,随n增大而减小。所以正面次数除以总次数,得到的比值仍然是不断接近1/2的。

 

游走到原点左侧(猫捉老鼠问题)

    若这个点从原点出发,随机游走无穷次,求这个点走到过-1点至少一次的概率(显然这与“走到原点左侧至少一次”是等价的)。或者形象一点:老鼠在-1点处不动,猫从原点随机游走,假设猫可以游走无穷次,若走到-1点老鼠就被捉,求猫捉到老鼠的概率。

    显然,猫如果捉到老鼠,一定是在奇数步后第一次捉到。设第一次捉到老鼠时,猫走了2k+1步,则显然最后一步是从0走到-1,而前2k步是在原点右侧(包括原点)随机游走。这就是说,在每一步走完之后,向右的步数总大于向左的步数。如果按照先后顺序,向右走换为1,向左走换为0,就会得到一个长度为2k的01串,其中有k个0,k个1,到这里可以看出:这种01串的个数就是Catalan数!也就是说,如果串长为2k,则满足要求的串的个数为Catalan数

数轴上的随机游走问题
    这样所求的概率就容易表示出来,它是一个无穷级数:

数轴上的随机游走问题
    求出来它的值就行了。幸运的是,C_k有对应的生成函数:

数轴上的随机游走问题
    于是有

数轴上的随机游走问题
    令x=1,则此式的值就是所求的无穷级数的值,结果为1。也就是说,猫有100%的概率能抓到老鼠。乍一看有些反直觉,猫如果一直向右走,就抓不到老鼠;但是仔细一想就能发现:这跟在全体实数中随机选数道理一样,选到无理数的概率为1,并不代表不会选到有理数。猫抓到老鼠的概率为1,并不代表猫没有可能抓不到老鼠。

 

猫抓老鼠问题中游走步数的期望

    上面已经证明,猫抓到老鼠的概率为1,一定有很多人也感兴趣猫抓到老鼠所用步数的期望。式子容易推出来,它仍然是一个无穷级数:

数轴上的随机游走问题
    继续用生成函数的方法解决:

数轴上的随机游走问题
    当x=1时,这个级数发散,可以认为级数的和为∞。也就是说,猫为了抓到老鼠,平均需要随机游走∞步。这无疑又是一个反直觉的结果。好可怜的喵~~~

这篇关于[转]数轴上的随机游走问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/341524

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法