Pytroch_Sequential使用、损失函数、反向传播和优化器

2023-11-03 13:52

本文主要是介绍Pytroch_Sequential使用、损失函数、反向传播和优化器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pytroch_Sequential使用、损失函数、反向传播和优化器

文章目录

    • nn.Sequential
    • 搭建小实战
    • 损失函数与反向传播
    • 优化器

nn.Sequential

nn.Sequential是一个有序的容器,用于搭建神经网络的模块被按照被传入构造器的顺序添加到nn.Sequential()容器中。

在这里插入图片描述

在这里插入图片描述

import torch.nn  as nn
from collections import OrderedDict
# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the first
# `ReLU`; the output of the first `ReLU` will become the input
# for `Conv2d(20,64,5)`. Finally, the output of
# `Conv2d(20,64,5)` will be used as input to the second `ReLU`
model = nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU())# Using Sequential with OrderedDict. This is functionally the
# same as the above code
model = nn.Sequential(OrderedDict([('conv1', nn.Conv2d(1,20,5)),('relu1', nn.ReLU()),('conv2', nn.Conv2d(20,64,5)),('relu2', nn.ReLU())]))
print(model)
Sequential((conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))(relu1): ReLU()(conv2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))(relu2): ReLU()
)

搭建小实战

还是以 C I F A R − 10 m o d e l CIFAR-10 model CIFAR10model为例

在这里插入图片描述

  1. 输入图像是3通道的32×32的
  2. 先后经过卷积层(5×5的卷积核)
  3. 最大池化层(2×2的池化核)
  4. 卷积层(5×5的卷积核)
  5. 最大池化层(2×2的池化核)
  6. 卷积层(5×5的卷积核)
  7. 最大池化层(2×2的池化核)
  8. 拉直(flatten)
  9. 全连接层的处理,
  10. 最后输出的大小为10

基于以上的介绍,后续将利用Pytorch构建模型,实现 C I F A R − 10 m o d e l s t r u c t u r e CIFAR-10 \quad model \quad structure CIFAR10modelstructure

参数说明:in_channels: int、out_channels: int,kernel_size: Union由input、特征图以及卷积核即可看出,而stride、padding需要通过公式计算得到。

特得到的具体的特征图尺寸的计算公式如下:
在这里插入图片描述

inputs : 3@32x32,3通道32x32的图片,5*5的kernel --> 特征图(Feature maps) : 32@32x32

即经过32个3@5x5的卷积层,输出尺寸没有变化(有x个卷积核即由x个卷积核,卷积核的通道数与输入的通道数相等)

由上述的计算公式来计算出 s t r i d e stride stride p a d d i n g padding padding

在这里插入图片描述

卷积层中的stride默认为1

池化层中的stride默认为kernel_size的大小

import torch
import torch.nn as nn
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
class BS(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2)  #stride和padding计算得到self.maxpool1 = nn.MaxPool2d(kernel_size=2)self.conv2 = nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2)self.maxpool2 = nn.MaxPool2d(kernel_size=2)self.conv3 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2)self.maxpool3 = nn.MaxPool2d(kernel_size=2)self.flatten = nn.Flatten()  #变为63*4*4=1024self.linear1 = nn.Linear(in_features=1024, out_features=64)self.linear2 = nn.Linear(in_features=64, out_features=10)def forward(self,x):x = self.conv1(x)x = self.maxpool1(x)x = self.conv2(x)x = self.maxpool2(x)x = self.conv3(x)x = self.maxpool3(x)x = self.flatten(x)x = self.linear1(x)x = self.linear2(x)return xbs = BS()
bs
BS((conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(flatten): Flatten(start_dim=1, end_dim=-1)(linear1): Linear(in_features=1024, out_features=64, bias=True)(linear2): Linear(in_features=64, out_features=10, bias=True)
)

利用Sequential优化代码,并在tensorboard显示

.add_graph函数用于将PyTorch模型图添加到TensorBoard中。通过这个函数,您可以以可视化的方式展示模型的计算图,使其他人更容易理解您的模型结构和工作流程。

add_graph(model, input_to_model, strip_default_attributes=True)
  • model:要添加的PyTorch模型。
  • input_to_model:用于生成模型图的输入数据。
  • strip_default_attributes:是否删除模型中的默认属性,默认为True。
class BS(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),  #stride和padding计算得到nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),  #变为64*4*4=1024nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10),)def forward(self,x):x = self.model(x)return xbs = BS()
print(bs)
BS((model): Sequential((0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(6): Flatten(start_dim=1, end_dim=-1)(7): Linear(in_features=1024, out_features=64, bias=True)(8): Linear(in_features=64, out_features=10, bias=True))
)
# 在tensorboard中显示
input_ = torch.ones((64,3,32,32))
writer = SummaryWriter(".logs")
writer.add_graph(bs, input_)  # 定义的模型,数据
writer.close()

利用tensorboard可视化网络结构graph如下
在这里插入图片描述

损失函数与反向传播

计算模型目标输出和实际输出之间的误差。并通过反向传播算法更新模型的权重和参数,以减小预测输出和实际输出之间的误差。

  • 计算实际输出和目标输出之间的差距
  • 为更新输出提供一定依据(反向传播)

不同的模型用的损失函数一般也不一样。
在这里插入图片描述

平均绝对误差MAE Mean Absolute Error

torch.nn.L1Loss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch
import torch.nn as nn
# 实例化
criterion1 = nn.L1Loss(reduction='mean')#mean
criterion2 = nn.L1Loss(reduction="sum")#sum
output = torch.tensor([1.0, 2.0, 3.0])#或dtype=torch.float32
target = torch.tensor([2.0, 2.0, 2.0])#或dtype=torch.float32
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(0.6667)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(2.)
tensor(0.6667)
tensor(2.)
loss = nn.L1Loss()
input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
output.backward()
output
tensor(1.0721, grad_fn=<MeanBackward0>)

均方误差MSE Mean-Square Error
在这里插入图片描述

torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)

在这里插入图片描述

import torch.nn as nn
# 实例化
criterion1 = nn.MSELoss(reduction='mean')
criterion2 = nn.MSELoss(reduction="sum")
output = torch.tensor([1, 2, 3],dtype=torch.float32)
target = torch.tensor([1, 2, 5],dtype=torch.float32)
# 平均值损失值
loss = criterion1(output, target)
print(loss)  # 输出:tensor(1.3333)
# 误差和
loss1 = criterion2(output,target)
print(loss1) # tensor(4.)
tensor(1.3333)
tensor(4.)

交叉熵损失 CrossEntropyLoss

torch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean',label_smoothing=0.0)

当你有一个不平衡的训练集时,这是特别有用的
在这里插入图片描述

import torch
import torch.nn as nn# 设置三分类问题,假设是人的概率是0.1,狗的概率是0.2,猫的概率是0.3
x = torch.tensor([0.1, 0.2, 0.3])
print(x)
y = torch.tensor([1]) # 设目标标签为1,即0.2狗对应的标签,目标标签张量y
x = torch.reshape(x, (1, 3))  # tensor([[0.1000, 0.2000, 0.3000]]),批次大小为1,分类数3,即为3分类
print(x)
print(y)
# 实例化对象
loss_cross = nn.CrossEntropyLoss()
# 计算结果
result_cross = loss_cross(x, y)
print(result_cross)
tensor([0.1000, 0.2000, 0.3000])
tensor([[0.1000, 0.2000, 0.3000]])
tensor([1])
tensor(1.1019)
import torch
import torchvision
from torch.utils.data import DataLoader# 准备数据集
dataset = torchvision.datasets.CIFAR10(root="dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 数据集加载器
dataloader = DataLoader(dataset, batch_size=1)
"""
输入图像是3通道的32×32的,
先后经过卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
卷积层(5×5的卷积核)、
最大池化层(2×2的池化核)、
拉直、
全连接层的处理,
最后输出的大小为10
"""# 搭建神经网络
class BS(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),  #stride和padding计算得到nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),  #变为64*4*4=1024nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10),)def forward(self, x):x = self.model(x)return x# 实例化
bs = BS()
loss = torch.nn.CrossEntropyLoss()
# 对每一张图片进行CrossEntropyLoss损失函数计算
# 使用损失函数loss计算预测结果和目标标签之间的交叉熵损失for inputs,labels in dataloader:outputs = bs(inputs)result = loss(outputs,labels)print(result)
tensor(2.3497, grad_fn=<NllLossBackward0>)
tensor(2.2470, grad_fn=<NllLossBackward0>)
tensor(2.2408, grad_fn=<NllLossBackward0>)
tensor(2.2437, grad_fn=<NllLossBackward0>)
tensor(2.3121, grad_fn=<NllLossBackward0>)
........

优化器

优化器(Optimizer)是用于更新神经网络参数的工具

它根据计算得到的损失函数的梯度来调整模型的参数,以最小化损失函数并改善模型的性能

在这里插入图片描述
常见的优化器包括:SGD、Adam

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

model.parameters()用于获取模型的可学习参数

learning rate,lr表示学习率,即每次参数更新的步长

在每个训练批次中,需要执行以下操作:

  1. 输入训练数据到模型中,进行前向传播

  2. 根据损失函数计算损失

  3. 调用优化器的zero_grad()方法清零之前的梯度

  4. 调用backward()方法进行反向传播,计算梯度

  5. 调用优化器的step()方法更新模型参数

伪代码如下(运行不了的)

import torch
import torch.optim as optim# Step 1: 定义模型
model = ...
# Step 2: 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Step 3: 定义损失函数
criterion = ...
# Step 4: 训练循环
for inputs, labels in dataloader:# 前向传播outputs = model(inputs)# 计算损失loss = criterion(outputs, labels)# 清零梯度optimizer.zero_grad()# 反向传播,得到梯度loss.backward()# 更新参数,根据梯度就行优化optimizer.step()

在上述模型代码中,SGD作为优化器,lr为0.01。同时根据具体任务选择适合的损失函数,例如torch.nn.CrossEntropyLoss、torch.nn.MSELoss等,以CIFRA10为例

import torch
import torch.optim as optim
import torchvision
from torch.utils.data import DataLoaderdataset = torchvision.datasets.CIFAR10(root="dataset", train=False, transform=torchvision.transforms.ToTensor(),download=True)
dataloader = DataLoader(dataset,batch_size=1)
class BS(nn.Module):def __init__(self):super().__init__()self.model = nn.Sequential(nn.Conv2d(in_channels=3,out_channels=32,kernel_size=5,stride=1,padding=2),  #stride和padding计算得到nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=32,kernel_size=5,stride=1,padding=2),nn.MaxPool2d(kernel_size=2),nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5,padding=2),nn.MaxPool2d(kernel_size=2),nn.Flatten(),  #变为64*4*4=1024nn.Linear(in_features=1024, out_features=64),nn.Linear(in_features=64, out_features=10),)def forward(self, x):x = self.model(x)return xmodel = BS()  #定义model
optimizer = optim.SGD(model.parameters(), lr=0.01)  #定义优化器SGD
criterion = nn.CrossEntropyLoss()  #定义损失函数,交叉熵损失函数'''循环一次,只对数据就行了一轮的学习'''
for inputs, labels in dataloader:# 前向传播outputs = model(inputs)# 计算损失loss = criterion(outputs, labels)# 清零梯度optimizer.zero_grad()# 反向传播loss.backward()# 更新参数optimizer.step()# 打印经过优化器后的结果print(loss)"""训练循环20次"""
# for epoch in range(20):
#     running_loss = 0.0
#     for inputs, labels in dataloader:
#         # 前向传播
#         outputs = model(inputs)
#         # 计算损失
#         loss = criterion(outputs,labels)
#         # 清零梯度
#         optimizer.zero_grad()
#         # 反向传播
#         loss.backward()
#         # 更新参数
#         optimizer.step()
#         # 打印经过优化器后的结果
#         running_loss = running_loss + loss
#     print(running_loss)
Files already downloaded and verified
tensor(2.3942, grad_fn=<NllLossBackward0>)
tensor(2.2891, grad_fn=<NllLossBackward0>)
tensor(2.2345, grad_fn=<NllLossBackward0>)
tensor(2.2888, grad_fn=<NllLossBackward0>)
tensor(2.2786, grad_fn=<NllLossBackward0>)
........

在这里插入图片描述

这篇关于Pytroch_Sequential使用、损失函数、反向传播和优化器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/338627

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格