纯python实现大漠图色功能

2023-11-03 07:20

本文主要是介绍纯python实现大漠图色功能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大漠图色是一种自动化测试工具,可以用于识别屏幕上的图像并执行相应的操作。在Python中,可以使用第三方库pyautogui来实现大漠图色功能。具体步骤如下:

  1. 安装pyautogui库:在命令行中输入pip install pyautogui。
  2. 导入pyautogui库:在Python脚本中使用import pyautogui语句导入pyautogui库。
  3. 使用pyautogui.locateOnScreen()函数来查找屏幕上的图像,并返回图像的位置坐标。
  4. 使用pyautogui.click()函数来模拟鼠标点击操作。
  5. 使用pyautogui.typewrite()函数来模拟键盘输入操作。

实现如标题,废话不多说,直接看代码:

# 更新StressShow命令import numpy as np
import pyautogui
import copy
import cv2
from sklearn import clusterclass TuSe:def __init__(self):print('欢迎使用')def GetCapture(self, stax, stay, endx, endy):w = endx - staxh = endy - stayim = pyautogui.screenshot(region=(stax, stay, w, h))# im = cv2.cvtColor(np.array(im), cv2.COLOR_BGR2RGB)return np.array(im)def FindPic(self, x1, y1, x2, y2, path, thd):'''找图:param x1: 起点X:param y1: 起点Y:param x2: 终点X:param y2: 终点Y:param path: 图片路径:param thd: 相似度:return: 图片中心坐标'''img = self.GetCapture(x1, y1, x2, y2)img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)template = cv2.imread(path, 0)th, tw = template.shape[::]rv = cv2.matchTemplate(img, template, 1)minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)if 1 - minVal >= thd:return minLoc[0] + tw / 2 + x1, minLoc[1] + th / 2 + y1else:return -1, -1def Hex_to_Rgb(self, hex):'''十六进制转RGB:param hex: 十六进制颜色值:return: RGB'''return np.array(tuple(int(hex[i:i + 2], 16) for i in (0, 2, 4)))def CmpColor(self, x, y, color, sim: float):'''比色:param x: X坐标:param y: Y坐标:param color: 十六进制颜色,可以从大漠直接获取:param sim: 相似偏移:return: 真或加'''img = self.GetCapture(x - 1, y - 1, x + 1, y + 1)img = np.array(img)img = img[1][1]color = self.Hex_to_Rgb(color)res = np.absolute(color - img)sim = int((1 - sim) * 255)return True if np.amax(res) <= sim else Falsedef FindColor(self, x1, y1, x2, y2, des, sim: float):'''找色:param x1: 起点X:param y1: 起点Y:param x2: 终点X:param y2: 终点Y:param des: 十六进制颜色,可以从大漠直接获取:param sim: 相似偏移:return:'''img = self.GetCapture(x1, y1, x2, y2)img = np.array(img)res = np.absolute(img - self.Hex_to_Rgb(des))sim = int((1 - sim) * 255)res = np.argwhere(np.all(res <= sim, axis=2))res = res + (y1, x1)return res[:, [1, 0]]def GetColorNum(self, x1, y1, x2, y2, des, sim: float):'''获取颜色数量:param x1: 起点X:param y1: 起点Y:param x2: 终点X:param y2: 终点Y:param des: 十六进制颜色,可以从大漠直接获取:param sim: 相似偏移:return:'''return len(self.FindColor(x1, y1, x2, y2, des, sim))def FindMultColor(self, stax, stay, endx, endy, des):'''多点找色:param stax::param stay::param endx::param endy::param des: 大漠获取到的多点找色数据,偏色必须写上:return:'''w = endx - staxh = endy - stayimg = pyautogui.screenshot(region=(stax, stay, w, h))img = np.array(img)rgby = []ps = []a = 0firstXY = []res = np.empty([0, 2])for i in des.split(','):rgb_y = i[-13:]r = int(rgb_y[0:2], 16)g = int(rgb_y[2:4], 16)b = int(rgb_y[4:6], 16)y = int(rgb_y[-2:])rgby.append([r, g, b, y])for i in range(1, len(des.split(','))):ps.append([int(des.split(',')[i].split('|')[0]), int(des.split(',')[i].split('|')[1])])for i in rgby:result = np.logical_and(abs(img[:, :, 0:1] - i[0]) < i[3], abs(img[:, :, 1:2] - i[1]) < i[3],abs(img[:, :, 2:3] - i[2]) < i[3])results = np.argwhere(np.all(result == True, axis=2)).tolist()if a == 0:firstXY = copy.deepcopy(results)else:nextnextXY = copy.deepcopy(results)for index in nextnextXY:index[0] = int(index[0]) - ps[a - 1][1]index[1] = int(index[1]) - ps[a - 1][0]q = set([tuple(t) for t in firstXY])w = set([tuple(t) for t in nextnextXY])matched = np.array(list(q.intersection(w)))res = np.append(res, matched, axis=0)a += 1unique, counts = np.unique(res, return_counts=True, axis=0)index = np.argmax(counts)re = unique[index] + (stay, stax)if np.max(counts) == len(des.split(',')) - 1:return np.flipud(re)return np.array([-1, -1])def FindPicEx(self, x1, y1, x2, y2, path, thd=0.9, MIN_MATCH_COUNT=8):'''全分辨率找图:param x1::param y1::param x2::param y2::param path::param thd: 相似度:param MIN_MATCH_COUNT: 特征点数量:return:'''thd = thd - 0.2template = cv2.imread(path, 0)  # queryImage# target = cv2.imread('target.jpg', 0)  # trainImagetarget = self.GetCapture(x1, y1, x2, y2)target = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)# Initiate SIFT detector创建sift检测器sift = cv2.xfeatures2d.SIFT_create()# find the keypoints and descriptors with SIFTkp1, des1 = sift.detectAndCompute(template, None)kp2, des2 = sift.detectAndCompute(target, None)# 创建设置FLANN匹配FLANN_INDEX_KDTREE = 0index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)search_params = dict(checks=50)flann = cv2.FlannBasedMatcher(index_params, search_params)matches = flann.knnMatch(des1, des2, k=2)# store all the good matches as per Lowe's ratio test.good = []for m, n in matches:if m.distance < thd * n.distance:good.append(m)if len(good) > MIN_MATCH_COUNT:# 获取关键点的坐标src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)# 计算变换矩阵和MASKM, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)h, w = template.shape# 使用得到的变换矩阵对原图像的四个角进行变换,获得在目标图像上对应的坐标pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)dst = cv2.perspectiveTransform(pts, M)res = (dst[0] + dst[2]) / 2  # [[[ 39.11337  147.11575 ]] [[135.06624  255.12143 ]]return int(res[0][0]) + x1, int(res[0][1]) + y1else:return -1, -1def _FilterRec(self, res, loc):""" 对同一对象的多个框按位置聚类后,按置信度选最大的一个进行保留。:param res: 是 cv2.matchTemplate 返回值:param loc: 是 cv2.np.argwhere(res>threshold) 返回值:return: 返回保留的点的列表 pts"""model = cluster.AffinityPropagation(damping=0.5, max_iter=100, convergence_iter=10, preference=-50).fit(loc)y_pred = model.labels_pts = []for i in set(y_pred):argj = loc[y_pred == i]argi = argj.Tpt = argj[np.argmax(res[tuple(argi)])]pts.append(pt[::-1])return np.array(pts)def FindMultPic(self, x1, y1, x2, y2, path, thd):'''多目标找图:param x1::param y1::param x2::param y2::param path::param thd: 相似度:return:'''target = self.GetCapture(x1, y1, x2, y2)target = cv2.cvtColor(target, cv2.COLOR_BGR2GRAY)template = cv2.imread(path, 0)w, h = template.shape[:2]res = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)loc = np.argwhere(res >= thd)if len(loc):resc = self._FilterRec(res, loc)return resc + (h / 2 + x1, w / 2 + y1)else:return [[-1, -1]]def FindPic_TM(self, x1, y1, x2, y2, path, thd):'''找透明图,透明色为黑色:param x1: 起点X:param y1: 起点Y:param x2: 终点X:param y2: 终点Y:param path: 图片路径:param thd: 相似度:return: 图片中心坐标'''img = self.GetCapture(x1, y1, x2, y2)img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)template = cv2.imread(path)template2 = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)ret, mask = cv2.threshold(template2, 20, 255, cv2.THRESH_BINARY)th, tw = template.shape[:2]rv = cv2.matchTemplate(img, template, 1, mask=mask)minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(rv)if 1 - minVal >= thd:return minLoc[0] + tw / 2 + x1, minLoc[1] + th / 2 + y1else:return -1, -1def StressShow(self, stax, stay, endx, endy, des, type=0):'''保留选中颜色,其他为黑色,相似度根据偏色调整:param stax::param stay::param endx::param endy::param des: 大漠的色彩描述:param type: 0为原来颜色,1为白色:return:'''# des = 'e81010-101010|f9ad08-000000'dess = des.split('|')des = [i[0:6] for i in dess]des = [np.array(self.Hex_to_Rgb(d)) for d in des]pds = [i[-6:] for i in dess]pds = tuple(tuple(int(item[i:i + 2]) for i in range(0, len(item), 2)) for item in pds)img = self.GetCapture(stax, stay, endx, endy)mask = np.zeros(img.shape[:2], dtype=np.bool_)for i, color in enumerate(des):mask += np.all(np.abs(img - color) <= pds[i], axis=-1)new_img = np.where(mask[..., None], [255, 255, 255], [0, 0, 0]) if type else np.where(mask[..., None], img,[0, 0,0])  # 修改这里,将选中的颜色设为白色img_converted = cv2.convertScaleAbs(new_img)img_converted = cv2.cvtColor(np.array(img_converted), cv2.COLOR_BGR2RGB)return img_converteda = TuSe()
b = a.StressShow(0, 0, 1920, 1080, 'e81010-101010|36659e-101010', 0)
cv2.imshow('13', b)
cv2.waitKey(0)
cv2.destroyAllWindows()

这篇关于纯python实现大漠图色功能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/336514

相关文章

使用FileChannel实现文件的复制和移动方式

《使用FileChannel实现文件的复制和移动方式》:本文主要介绍使用FileChannel实现文件的复制和移动方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录使用 FileChannel 实现文件复制代码解释使用 FileChannel 实现文件移动代码解释

Spring实现Bean的初始化和销毁的方式

《Spring实现Bean的初始化和销毁的方式》:本文主要介绍Spring实现Bean的初始化和销毁的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Bean的初始化二、Bean的销毁总结在前面的章节当中介绍完毕了ApplicationContext,也就

Python多重继承慎用的地方

《Python多重继承慎用的地方》多重继承也可能导致一些问题,本文主要介绍了Python多重继承慎用的地方,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录前言多重继承要慎用Mixin模式最后前言在python中,多重继承是一种强大的功能,它允许一个

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

Django之定时任务django-crontab的实现

《Django之定时任务django-crontab的实现》Django可以使用第三方库如django-crontab来实现定时任务的调度,本文主要介绍了Django之定时任务django-cront... 目录crontab安装django-crontab注册应用定时时间格式定时时间示例设置定时任务@符号

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

Java实现按字节长度截取字符串

《Java实现按字节长度截取字符串》在Java中,由于字符串可能包含多字节字符,直接按字节长度截取可能会导致乱码或截取不准确的问题,下面我们就来看看几种按字节长度截取字符串的方法吧... 目录方法一:使用String的getBytes方法方法二:指定字符编码处理方法三:更精确的字符编码处理使用示例注意事项方

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

嵌入式Linux之使用设备树驱动GPIO的实现方式

《嵌入式Linux之使用设备树驱动GPIO的实现方式》:本文主要介绍嵌入式Linux之使用设备树驱动GPIO的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、设备树配置1.1 添加 pinctrl 节点1.2 添加 LED 设备节点二、编写驱动程序2.1