YOLOv8添加AIFI(Attention-based Intrascale Feature Interaction模块替换SPPF模块)

本文主要是介绍YOLOv8添加AIFI(Attention-based Intrascale Feature Interaction模块替换SPPF模块),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

1.1 相关介绍

模块名称:Attention-based Intrascale Feature Interaction
论文名称:RT-DETR: DETRs Beat Yolos on Real-time Object Detection
这是论文中的图,此处将其中的AIFI模块拿过来改进YOLOv8。
在这里插入图片描述

1.2 其他可改进SPPF模块

  1. 如何修改:YOLOv8修改特征金字塔(替换SPPF模块)
  2. 或者看此贴:yolov8改进——SFFP特征金字塔池化修改(详细版)
  3. 常见特征金字塔模块代码实现:常见特征金字塔模块代码实现

2.改进

2.1 AIFI代码

在YOLOv8新版中,已经集成了这个模块,因此,这里不展示如何放置到yolov8中。


如果使用的是老版的YOLOV8代码,nn模块下新建一个AIFI.py即可。
代码如下:

class TransformerEncoderLayer(nn.Module):"""Defines a single layer of the transformer encoder."""def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):"""Initialize the TransformerEncoderLayer with specified parameters."""super().__init__()self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)# Implementation of Feedforward modelself.fc1 = nn.Linear(c1, cm)self.fc2 = nn.Linear(cm, c1)self.norm1 = nn.LayerNorm(c1)self.norm2 = nn.LayerNorm(c1)self.dropout = nn.Dropout(dropout)self.dropout1 = nn.Dropout(dropout)self.dropout2 = nn.Dropout(dropout)self.act = actself.normalize_before = normalize_before@staticmethoddef with_pos_embed(tensor, pos=None):"""Add position embeddings to the tensor if provided."""return tensor if pos is None else tensor + posdef forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):"""Performs forward pass with post-normalization."""q = k = self.with_pos_embed(src, pos)src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]src = src + self.dropout1(src2)src = self.norm1(src)src2 = self.fc2(self.dropout(self.act(self.fc1(src))))src = src + self.dropout2(src2)return self.norm2(src)def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):"""Performs forward pass with pre-normalization."""src2 = self.norm1(src)q = k = self.with_pos_embed(src2, pos)src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]src = src + self.dropout1(src2)src2 = self.norm2(src)src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))return src + self.dropout2(src2)def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None):"""Forward propagates the input through the encoder module."""if self.normalize_before:return self.forward_pre(src, src_mask, src_key_padding_mask, pos)return self.forward_post(src, src_mask, src_key_padding_mask, pos)class AIFI(TransformerEncoderLayer):"""Defines the AIFI transformer layer."""def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):"""Initialize the AIFI instance with specified parameters."""super().__init__(c1, cm, num_heads, dropout, act, normalize_before)def forward(self, x):"""Forward pass for the AIFI transformer layer."""c, h, w = x.shape[1:]pos_embed = self.build_2d_sincos_position_embedding(w, h, c)# Flatten [B, C, H, W] to [B, HxW, C]x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()@staticmethoddef build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):"""Builds 2D sine-cosine position embedding."""grid_w = torch.arange(int(w), dtype=torch.float32)grid_h = torch.arange(int(h), dtype=torch.float32)grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')assert embed_dim % 4 == 0, \'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'pos_dim = embed_dim // 4omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dimomega = 1. / (temperature ** omega)out_w = grid_w.flatten()[..., None] @ omega[None]out_h = grid_h.flatten()[..., None] @ omega[None]return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]

2.2 task.py

这里新版YOLOv8也帮我们写好了,因此,不需要改动。


如果是老版的代码,在parse_model方法下,找到一堆elif的地方添加以下代码。

        elif m is AIFI:args = [ch[f], *args]

老版如下。并没有AIFI的代码。
在这里插入图片描述

2.3 模型改进

将yolov8.yaml复制一份,新建yolov8-AIFI.yaml,将SPPF模块替换为AIFI即可,如下。
SPPF那一行修改如下: - [-1, 1, AIFI, [1024, 8]] # 9

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, AIFI, [1024, 8]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3. 运行图

运行效果如下,没有报错。
在这里插入图片描述
提醒:这个对torch版本要求比较高!!!

这篇关于YOLOv8添加AIFI(Attention-based Intrascale Feature Interaction模块替换SPPF模块)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/334203

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

Python如何判断字符串中是否包含特殊字符并替换

《Python如何判断字符串中是否包含特殊字符并替换》这篇文章主要为大家详细介绍了如何使用Python实现判断字符串中是否包含特殊字符并使用空字符串替换掉,文中的示例代码讲解详细,感兴趣的小伙伴可以了... 目录python判断字符串中是否包含特殊字符方法一:使用正则表达式方法二:手动检查特定字符Pytho

C#继承之里氏替换原则分析

《C#继承之里氏替换原则分析》:本文主要介绍C#继承之里氏替换原则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#里氏替换原则一.概念二.语法表现三.类型检查与转换总结C#里氏替换原则一.概念里氏替换原则是面向对象设计的基本原则之一:核心思想:所有引py

Python logging模块使用示例详解

《Pythonlogging模块使用示例详解》Python的logging模块是一个灵活且强大的日志记录工具,广泛应用于应用程序的调试、运行监控和问题排查,下面给大家介绍Pythonlogging模... 目录一、为什么使用 logging 模块?二、核心组件三、日志级别四、基本使用步骤五、快速配置(bas

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中