NVIDIA Tesla V100部署与使用

2023-11-02 18:50
文章标签 部署 使用 nvidia v100 tesla

本文主要是介绍NVIDIA Tesla V100部署与使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在先前的实验过程中,使用了腾讯云提供的nvidia T4GPU,尽管其性能较博主的笔记本有了极大提升,但总感觉仍有些美中不足,因此本次博主租赁了nvidia V100 GPU,看看它的性能表现如何。
和先前一样,只需要将服务器使用xshell连接我们就可以使用了。我们首先看下其配置情况:

在这里插入图片描述
可以看到,其GPU显存达到了32G,先前博主查询V100的显存仅为16G的,这可当真是意外之喜。
然后便是老生常谈的环境部署过程了:
创建虚拟环境:

conda create -n yolo python=3.8

此时报错:

NoWritableEnvsDirError: No writeable envs directories configured.- /home/ubuntu/.conda/envs- /usr/local/miniconda3/envs

这是没有写入权限造成的,修改一下:

sudo chmod a+w .conda

或者执行下面命令,注意路径可能不同

sudo chmod -R 777 /home/ubuntu/miniconda3

再次创建环境:成功。随后激活yolo环境

source activate yolo

然后安装pytorch及其依赖

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

其他依赖包

 pip install matplotlibpip install scipypip install tensorboardpip install tqdmpip install opencv-python当然这里可以一次性使用以下命令全部安装:pip install matplotlib,scipy,tensorboard,tqdm,opencv-python

在这里插入图片描述

随后我们使用pycharm连接服务器。

在这里插入图片描述

然后便可以开始训练了,设置batch-size=32,epoch为400,此时GPU使用情况如下:

在这里插入图片描述

当我们将batch-size调整为48时,在训练过程中,其会保存一些数据,此时便存在显存溢出的风险了。

在这里插入图片描述
警告:
根据实验,将batch-size设置为32依旧会爆显存,因此将其设置为24,其实在监控中可以发现,GPU可能只是在一瞬间对显存需求较大,从而造成爆显存问题,如我们在训练完第一轮后保留一些梯度信息,模型信息时会对显存需求激增,从而出错。

在这里插入图片描述
最终本次实验设置batch-size=24,epoch=400
实验环境:
GPU为 NVIDIA Tesla V100,显存32G
CPU为Intel® Xeon® Gold 6133 CPU @ 2.50GHz
下图是CPU配置信息,使用cat /proc/cpuinfo即可查询

在这里插入图片描述
使用下面命令查询cpu信息,可知该服务器上由8个CPU,每个CPU有8个核心,每个核心为8线程。共8×8×8=512个线程

(yolo) ubuntu@VM-0-4-ubuntu:~$ grep 'processor' /proc/cpuinfo |  wc -l
8
(yolo) ubuntu@VM-0-4-ubuntu:~$ grep 'physical id' /proc/cpuinfo 
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
physical id	: 0
(yolo) ubuntu@VM-0-4-ubuntu:~$ grep 'core id' /proc/cpuinfo | sort -u |wc -l
8
(yolo) ubuntu@VM-0-4-ubuntu:~$ grep 'processor' /proc/cpuinfo | sort -u | wc -l
8
(yolo) ubuntu@VM-0-4-ubuntu:~$ 

历时28个小时,epoch=400,batch-size=24。
在本次运行完成后,竟然惊奇的发现较先前有了很大进步,而且在运行时也发现其loss依旧还有下降的趋势,因此决定在此基础上再次迭代200次并进行观测结果。
如此看来进行简单原因分析,首先说较先前训练轮数增加了,此外batch-size也增大了。可能便是此使其产生变化。

这篇关于NVIDIA Tesla V100部署与使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/332573

相关文章

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

flask库中sessions.py的使用小结

《flask库中sessions.py的使用小结》在Flask中Session是一种用于在不同请求之间存储用户数据的机制,Session默认是基于客户端Cookie的,但数据会经过加密签名,防止篡改,... 目录1. Flask Session 的基本使用(1) 启用 Session(2) 存储和读取 Se