离散傅里叶变换中的能量守恒公式(帕斯瓦尔定理)及其程序举例验证

本文主要是介绍离散傅里叶变换中的能量守恒公式(帕斯瓦尔定理)及其程序举例验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

离散傅里叶变换中的能量守恒公式(帕斯瓦尔定理)及其程序举例验证

一、 离散傅里叶变换中的能量守恒公式

离散傅里叶变换中的能量守恒公式:

∑ n = 0 N − 1 ∣ x [ n ] ∣ 2 = 1 N ∑ k = 0 N − 1 ∣ X [ k ] ∣ 2 (1) \sum\limits_{n = 0}^{N - 1} {|x[n]{|^2}} = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {|X[k]{|^2}} \tag1 n=0N1x[n]2=N1k=0N1X[k]2(1)
其中, x [ n ] x[n] x[n]是原始信号的离散时间域表示, X [ k ] {X[k]} X[k]是信号离散傅里叶变换后的频域表示, N N N是信号的长度。

该公式表示了信号在时间域和频率域中的能量之间的关系。

左侧是原始信号的能量,通过计算每个样本值的平方后求和。

右侧是信号的频率域表示的能量,通过计算每个频率分量的平方求和,并除以信号长度。两者之间存在一个归一化因子 1 N \frac{1}{N} N1,用于保持能量守恒。

这个公式的意义在于,它表明信号在时间域和频率域中的能量总量是相等的,即信号的能量在傅里叶变换过程中保持不变。

在该公式中暗含了 n ∈ [ 0 , N − 1 ] , k ∈ [ 0 , N − 1 ] n \in [0,N - 1],k \in [0,N - 1] n[0,N1]k[0,N1].

二、基于短长度信号程序的验证

2.1 问题描述

通过编写matlab程序来简单验证,该能量守恒公式。假设时域信号x=[6,2,5],根据式(1)可得,时间域能量=6×6+2×2+5×5=65。

2.2 通过matlab程序验证

所编写的程序如下:

clc
clear all
close all
% 1.构建一个序列x
x=[6,2,5];
N=length(x);% 2.计算时间域能量energy_time
energy_time=x*x'% 3.计算频率域能量energy_frequency
X=fft(x,N);
X_module=abs(X);
energy_frequency=sum(X_module.^2)/N

运行结果:
图1 运行结果比较
图1 运行结果比较
根据运行结果(图1),可以很看到时频域能量相等,公式准确。

三、基于大长度信号程序的验证

3.1 问题描述

通过编写matlab程序来验证较长尺度信号的时频域能量守恒公式。
比如长度为2001采样率为1000的信号:
x = 10 sin ⁡ ( 2 π ⋅ 300 ⋅ t ) x = 10\sin (2\pi \cdot 300 \cdot t) x=10sin(2π300t)
的时频域能量守恒。

3.2 通过matlab程序验证

clc
clear all
close all% 1.构建一个序列x
fs=1000;
dt=1/fs;
t=0:dt:2;
x=10*sin(2*pi*300*t)  ;% 2.计算时间域能量energy_time
N=length(x);
energy_time=x*x'% 3.计算频率域能量energy_frequency
X=fft(x,N);
X_module=abs(X);
energy_frequency=sum(X_module.^2)/N

运行结果

图2 运行结果比较
图2 运行结果比较

根据运行结果(图2),可以很看到时频域能量相等,公式准确。

这篇关于离散傅里叶变换中的能量守恒公式(帕斯瓦尔定理)及其程序举例验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/330418

相关文章

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

SpringBoot后端实现小程序微信登录功能实现

《SpringBoot后端实现小程序微信登录功能实现》微信小程序登录是开发者通过微信提供的身份验证机制,获取用户唯一标识(openid)和会话密钥(session_key)的过程,这篇文章给大家介绍S... 目录SpringBoot实现微信小程序登录简介SpringBoot后端实现微信登录SpringBoo

uniapp小程序中实现无缝衔接滚动效果代码示例

《uniapp小程序中实现无缝衔接滚动效果代码示例》:本文主要介绍uniapp小程序中实现无缝衔接滚动效果的相关资料,该方法可以实现滚动内容中字的不同的颜色更改,并且可以根据需要进行艺术化更改和自... 组件滚动通知只能实现简单的滚动效果,不能实现滚动内容中的字进行不同颜色的更改,下面实现一个无缝衔接的滚动

Vue 2 项目中配置 Tailwind CSS 和 Font Awesome 的最佳实践举例

《Vue2项目中配置TailwindCSS和FontAwesome的最佳实践举例》:本文主要介绍Vue2项目中配置TailwindCSS和FontAwesome的最... 目录vue 2 项目中配置 Tailwind css 和 Font Awesome 的最佳实践一、Tailwind CSS 配置1. 安

CSS3 布局样式及其应用举例

《CSS3布局样式及其应用举例》CSS3的布局特性为前端开发者提供了无限可能,无论是Flexbox的一维布局还是Grid的二维布局,它们都能够帮助开发者以更清晰、简洁的方式实现复杂的网页布局,本文给... 目录深入探讨 css3 布局样式及其应用引言一、CSS布局的历史与发展1.1 早期布局的局限性1.2

rust 中的 EBNF简介举例

《rust中的EBNF简介举例》:本文主要介绍rust中的EBNF简介举例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 什么是 EBNF?2. 核心概念3. EBNF 语法符号详解4. 如何阅读 EBNF 规则5. 示例示例 1:简单的电子邮件地址

Java使用WebView实现桌面程序的技术指南

《Java使用WebView实现桌面程序的技术指南》在现代软件开发中,许多应用需要在桌面程序中嵌入Web页面,例如,你可能需要在Java桌面应用中嵌入一部分Web前端,或者加载一个HTML5界面以增强... 目录1、简述2、WebView 特点3、搭建 WebView 示例3.1 添加 JavaFX 依赖3

防止SpringBoot程序崩溃的几种方式汇总

《防止SpringBoot程序崩溃的几种方式汇总》本文总结了8种防止SpringBoot程序崩溃的方法,包括全局异常处理、try-catch、断路器、资源限制、监控、优雅停机、健康检查和数据库连接池配... 目录1. 全局异常处理2. 使用 try-catch 捕获异常3. 使用断路器4. 设置最大内存和线

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.