模糊C均值聚类(FCM)python

2023-11-02 04:36
文章标签 python 模糊 聚类 均值 fcm

本文主要是介绍模糊C均值聚类(FCM)python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、模糊C均值聚类的原理 

二、不使用skfuzzy的python代码

三、 使用skfuzzy的python代码


一、模糊C均值聚类的原理 

 

二、不使用skfuzzy的python代码

import numpy as np
import random
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False'''初始化隶属矩阵'''
def initial_u0(n,K):''':param n:样本数量:param K:簇的数量:return: 初始化的隶属矩阵'''u0=np.zeros((K,n))for i in range(K):for j in range(n):if i==0:u0[i][j]=random.uniform(0,1)elif i<K-1:s=0for k in range(i):s=s+u0[k][j]u0[i][j]=random.uniform(0,1-s)else:s=0for k in range(i):s=s+u0[k][j]u0[i][j]=1-sreturn u0'''聚类函数'''
def Cluster(U,n):''':param U:隶属度矩阵:param n: 样本数量:return: 聚类结果'''cluster=[]for i in range(n):A=U.T[i].tolist()a=A.index(max(A))cluster.append(int(a))return cluster'''计算隶属中心矩阵'''
def center(data,U,m,n,K,dim):''':param data:样本数据:param U: 隶属度矩阵:param m: 模糊加权参数,一般取2:param n: 样本数量:param K: 聚类数目:param dim: 维度:return: 隶属中心矩阵''''''进行初始聚类'''cluster=Cluster(U,n)'''初始化隶属中心矩阵'''Z=np.zeros((K,dim))'''计算隶属中心矩阵'''#初始化u_x=[np.zeros((1,dim)) for i in range(K)]u=[0 for i in range(K)]#计算for i in range(n):c=cluster[i]  #类别u[c]=u[c]+(U[c][i])**mu_x[c]=u_x[c]+((U[c][i])**m)*data[i]for i in range(K):Z[i]=u_x[i]/u[i]'''返回隶属中心矩阵'''return Z'''基于欧氏距离计算各点到聚类中心的距离矩阵'''
def distinct(data,n,dim,Z,K):''':param data:样本数据:param n: 样本数量:param dim: 数据维度:param Z: 隶属中心矩阵:param K: 聚类数目:return: 基于欧氏距离的距离矩阵''''''初始化距离矩阵'''D=np.zeros((K,n))'''计算欧式距离'''for i in range(K):for j in range(n):z=Z[i]   #隶属中心df=data[j]  #数据点df_z=df-zd=0for k in range(dim):d=d+(df_z[k])**2d=np.sqrt(d)D[i][j]=d'''返回距离矩阵'''return D'''定义目标函数并返回目标函数值'''
def function(data,Z,n,dim,K,U,m,D):''':param data:样本数据:param Z: 隶属中心矩阵:param n: 样本数量:param dim: 数据维度:param K: 聚类数目:param U: 隶属度矩阵:param m: 模糊加权参数:param D: 距离矩阵:return: 目标函数值''''''初始化聚类'''cluster=Cluster(U,n)'''计算目标函数值'''J=0    #目标函数值W=[0 for i in range(K)]for i in range(n):c=cluster[i]  #聚类类别df=data[i]    #数据点z=Z[c]        #聚类中心d=D[c][i]     #数据点到聚类中心的距离u=U[c][i]     #隶属度W[c]=W[c]+(u**m)*(d**2)J=sum(W)'''返回目标函数值'''return J'''更新隶属度矩阵'''
def update_U(data,Z,n,dim,K,D,m):''':param data:样本数据:param Z: 隶属中心矩阵:param n: 样本数量:param dim: 数据维度:param K: 聚类数目:param D: 距离矩阵:param m: 模糊加权参数:return: 更新后的隶属度矩阵''''''初始化隶属度矩阵'''U=np.zeros((K,n))'''更新隶属度矩阵'''for i in range(K):for j in range(n):r=0for k in range(K):r=r+(D[i][j]/D[k][j])**(2/(m-1))U[i][j]=1/r'''返回更新后的隶属度矩阵'''return U'''模糊C均值聚类函数'''
def FCM(data,K,Tmax,m,error):''':param data:样本数据:param K: 聚类数目:param Tmax: 最大迭代步数:param m: 模糊加权参数:param error: 迭代停止阈值,一般取0.001至0.01:return: 聚类结果''''''样本数量'''n=data.shape[0]'''数据维度'''dim=data.shape[1]'''初始化隶属度矩阵'''U0=initial_u0(n,K)U=U0.copy()'''存储目标函数值'''J=[]'''循环'''for i in range(Tmax):#计算隶属中心矩阵Z=center(data,U,m,n,K,dim)#基于欧氏距离计算各点到聚类中心的距离矩阵D=distinct(data,n,dim,Z,K)#计算目标函数的值J.append(function(data,Z,n,dim,K,U,m,D))#更新隶属度矩阵U=update_U(data,Z,n,dim,K,D,m)#判断阈值if i!=0 and abs(J[i-1]-J[i])<=error:break'''得到聚类结果'''cluster=Cluster(U,n)'''返回聚类结果(聚类类别,聚类中心,目标函数值)'''return cluster,Z,J[-1]'''主函数'''
if __name__=="__main__":'''随机产生400组在区间[0,1]上的二维数据'''data=np.array([[random.uniform(0, 1) for i in range(2)] for j in range(400)])'''聚类'''cluster,cntr,J=FCM(data,K=4,Tmax=1000,m=2,error=0.0001)print("聚类结果:\n{}".format(cluster))print("目标函数值:\n{}".format(J))#将数据分类fdata=data.tolist()X1=[]Y1=[]X2=[]Y2=[]X3=[]Y3=[]X4=[]Y4=[]for i in range(400):if cluster[i]==0:X1.append(fdata[i][0])Y1.append(fdata[i][1])if cluster[i]==1:X2.append(fdata[i][0])Y2.append(fdata[i][1])if cluster[i]==2:X3.append(fdata[i][0])Y3.append(fdata[i][1])if cluster[i]==3:X4.append(fdata[i][0])Y4.append(fdata[i][1])# 聚类图plt.scatter(X1, Y1, c='red', marker='o')plt.scatter([cntr[0][0]], [cntr[0][1]], marker='>', c="black", label='聚类中心1')plt.scatter(X2, Y2, c='blue', marker="o")plt.scatter([cntr[1][0]], [cntr[1][1]], marker='<', c="black", label="聚类中心2")plt.scatter(X3, Y3, c='green', marker="o")plt.scatter([cntr[2][0]], [cntr[2][1]], marker='^', c="black", label="聚类中心3")plt.scatter(X4, Y4, c='orange', marker="o")plt.scatter([cntr[3][0]], [cntr[3][1]], marker="D", c="black", label="聚类中心4")plt.legend()plt.xlabel("x")plt.ylabel("y")plt.title("聚类图")plt.show()

三、 使用skfuzzy的python代码

import numpy as np
import random
import skfuzzy as fuzz
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False'''随机产生400组在区间[0,1]上的二维数据'''
data = np.array([[random.uniform(0,1) for i in range(2)] for j in range(400)])'''初始化隶属度矩阵(聚成4类)'''
'''
cntr:聚类中心
u:最后的隶属度矩阵
u0:初始化的隶属度矩阵
d:是一个矩阵,记录每一个点到聚类中心的欧式距离
jm:是目标函数的优化历史
p:p是迭代的次数
fpc:全称是fuzzy partition coefficient, 是一个评价分类好坏的指标,它的范围是0到1, 1表示效果最好,后面可以通过它来选择聚类的个数。
'''
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(data.T, 4, 2, error=0.0001, maxiter=1000)'''迭代计算'''
cntr, u, u0, d, jm, p, fpc = fuzz.cluster.cmeans(data.T, 4,2, error=0.0001, maxiter=1000)'''获得聚类结果'''
cluster_membership = np.argmax(u, axis=0)'''绘制聚类结果'''
#将数据分类
fdata=data.tolist()
X1=[]
Y1=[]
X2=[]
Y2=[]
X3=[]
Y3=[]
X4=[]
Y4=[]
for i in range(400):if cluster_membership[i]==0:X1.append(fdata[i][0])Y1.append(fdata[i][1])if cluster_membership[i]==1:X2.append(fdata[i][0])Y2.append(fdata[i][1])if cluster_membership[i]==2:X3.append(fdata[i][0])Y3.append(fdata[i][1])if cluster_membership[i]==3:X4.append(fdata[i][0])Y4.append(fdata[i][1])#聚类图
plt.scatter(X1,Y1,c='red',marker='o')
plt.scatter([cntr[0][0]],[cntr[0][1]],marker='>',c="black",label='聚类中心1')
plt.scatter(X2,Y2,c='blue',marker="o")
plt.scatter([cntr[1][0]],[cntr[1][1]],marker='<',c="black",label="聚类中心2")
plt.scatter(X3,Y3,c='green',marker="o")
plt.scatter([cntr[2][0]],[cntr[2][1]],marker='^',c="black",label="聚类中心3")
plt.scatter(X4,Y4,c='orange',marker="o")
plt.scatter([cntr[3][0]],[cntr[3][1]],marker="D",c="black",label="聚类中心4")
plt.legend()
plt.xlabel("x")
plt.ylabel("y")
plt.title("聚类图")
plt.show()print(cluster_membership)
'''
print("cntr:\n{}".format(cntr))
print("u:\n{}".format(u))
print("u0:\n{}".format(u0))
print("d:\n{}".format(d))
print("jm:\n{}".format(jm))
print("p:\n{}".format(p))
print("fpc:\n{}".format(fpc))
'''

这篇关于模糊C均值聚类(FCM)python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/328150

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: