【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL

2023-11-02 03:52

本文主要是介绍【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ElasticSearch系列整体栏目


内容链接地址
【一】ElasticSearch下载和安装https://zhenghuisheng.blog.csdn.net/article/details/129260827
【二】ElasticSearch概念和基本操作https://blog.csdn.net/zhenghuishengq/article/details/134121631
【二】ElasticSearch的高级查询Query DSLhttps://blog.csdn.net/zhenghuishengq/article/details/134159587

ElasticSearch的高级句法查询Query DSL

  • 一,ElasticSearch高级查询语法Query DSL
    • 一,Query DSL的基本使用
      • 1.1,深分页查询Scroll
      • 1.2,match条件查询
      • 1.3,match_phrase短语查询
      • 1.4,multi_match多字段查询
      • 1.5,query_string 查询
      • 1.6,term精确匹配
      • 1.7,prefix前缀查询
      • 1.8,通配符查询wildcard
      • 1.9,范围查询range
      • 1.10,fuzzy模糊查询
      • 1.11,highlight查询
    • 2,Query DSL多条件查询(高级查询)
      • 2.1,Bool Query布尔查询
      • 2.2,Boosting Query权重查询
      • 2.3,Dis max query 最佳匹配
      • 2.4,Cross Field跨字段匹配

一,ElasticSearch高级查询语法Query DSL

前面两篇主要讲解了es的安装以及一些基本的概念,接下来这篇讲解的是es的高阶语法,QueryDSL。在这里主要是用ik分词器讲解,暂不使用默认的分词器。

一,Query DSL的基本使用

在安装了kibana之后,内部会有一个search的语句,用来查询数据

GET _search
{"query": {"match_all": {}}
}

其结果如下,默认是返回前10条数据,类似于做了分页,默认加了一个from0和一个size10,并且在es中,size默认是小于或者等于10000,如果超过这个值,就会直接抛异常

在这里插入图片描述

1.1,深分页查询Scroll

上面说了默认采用的是from加size的方式来解决分页数据返回的问题,但是size的数据是有大小的限制的,当然也可以通过以下命令来调节size的大小

PUT /zhs/_settings
{ "index.max_result_window" :"20000"
}

虽然这种方式可以暂时调节size大小,但是治标不治本,因为依旧是会存在限制,并且由于数据量太大,还可能将内存撑爆。因此后面引入了这种Scroll游标的方式来查询全量数据

GET /zhs_db/_search?scroll=1m   //1m表示查询时间窗口保持1分钟
{"query": {"match_all": {}},"size": 10		//批量查询10条数据
}

在将查询的值返回中可以看出,会生成一个_scroll_id,以及返回一些分片数,查询的总条数等

在这里插入图片描述

就是比如说第一次查询10条数据,随后记录最后一条数据的id,然后在这个时间窗口期内,携带这个id再去库中拉取后十条数据,往复如此。不管是关系系数据库还是非关系型数据库,其设计思想都是这样

拉取的数据会存储在快照里面,后面的操作都是操作这个快照中缓存的数据。因此为了保证性能问题,会牺牲一些精准度,因为后面写进来的数据不在这个快照里面。

1.2,match条件查询

在使用这个match之前,先创建一个索引,并设置分词器为ik分词器

DELETE /zhs_db
PUT /zhs_db		
{"settings" : {"index" : {"analysis.analyzer.default.type": "ik_max_word"}}
}

先插入几条数据,先用最基础的Put的方式插入五条数据


PUT /zhs_db/_doc/1
{
"address":"东岳泰山"
}
PUT /zhs_db/_doc/2
{
"address":"西岳华山"
}
PUT /zhs_db/_doc/3
{
"address":"南岳衡山"
}
PUT /zhs_db/_doc/4
{
"address":"北岳恒山"
}
PUT /zhs_db/_doc/5
{
"address":"中岳嵩山"
}

在确定要查询某一条数据时,可以先通过这个分词分析看看是如何进行分词的

POST _analyze
{"analyzer": "ik_max_word","text": "中岳嵩山"
}

那么可以直接通过这个match的方式批量查询数据

GET /zhs_db/_search
{"query": {"match": {"address": "中岳"}}
}

如果是要查询特定的某个值,可以直接再加一个operator属性,并且value设置成and,如果没有设置这个属性,那么默认值就是的or

GET /zhs_db/_search
{"query": {"match": {"address": {"query": "中岳嵩山","operator": "and"}}}
}

除了上面的operator之外,还可以使用 minimum_should_match ,用于最小分词匹配。就是说分词器默认分为中岳和嵩山两个,只需要满足其中一个就能被查出来

address:{"query":"中岳嵩山""minimum_should_match": 1
}

1.3,match_phrase短语查询

在使用这个短语查询时,需要通过分词器分析,判断两个词的下标是否连续

GET /zhs_db/_search
{"query": {"match_phrase": {"address": "中岳嵩山"}}
}

如通过这个ik分词器分析,可以得知这两个分开的词的position是连续的,分别为0和1,如果不连续,则不能将值查询出

在这里插入图片描述

当然为了解决这个间隔问题,可以直接通过设置 slop 属性来设置允许多少个空格进行匹配

address:{"query":"中岳嵩山""slop": 1
}

1.4,multi_match多字段查询

上面主要讲解的是单字段查询,但是在实际开发中一般都是多字段查询,其语句如下

GET /zhs_db/_search
{"query": {"multi_match": {"query": "中岳嵩山","fields": ["address","name"]}}
}

1.5,query_string 查询

queryString相当于是一个multi_match的一个综合版,如果没有指定具体的字段,则会在全字段中查询

GET /zhs_db/_search
{"query": {"query_string": {"query": "中岳"}}
}

可以设置默认的字段,也可以指定多个字段

"query_string": {//"default_field": "address","fields": ["name","address"],"query": "中岳"
}

1.6,term精确匹配

上面的match属于是模糊匹配,而使用精确匹配的,就是这个term。

在ES的Mapping Type 中 keyword , date ,integer, long , double , boolean or ip 这些类型不分词,只有text类型分词。因此term在对这些数据进行查询时,就是精确匹配

GET /zhs_db/_search
{"query": {"term": {"address": "中岳"}}
}

如果想要对全字段进行精确匹配,可以添加一个keyword 关键字

"address.keyword": "中岳嵩山"

在es中,查询会有算分操作,而算分操作会影响到性能问题,而精确匹配是不需要算分的,可以将query转成filter,从而忽略算分所带来的影响

"query":{"constant_score":{"filter":{}}
}

如果短时间内存在多次term的查询,那么就会将这部分数据缓存起来

1.7,prefix前缀查询

前缀查询就是查询以某个字段开头的数据,因此用不上底层的倒排字典,而是将所有的数据遍历一遍,将符合的数据返回。由于用不上倒排索引,因此对性能是有一定的影响的

PUT /zhs_db/_search
{"query":{"prefix":{"address":{"value":"嵩山"}}}
}

1.8,通配符查询wildcard

通配符查询就和这个前缀查询一样,都是利用不上这个倒排索引,而是将所有的数据遍历查询一遍,符合的数据返回。

GET /zhs_db/_search
{"query": {"wildcard": {"address": {"value": "*山*"}}}
}

1.9,范围查询range

可以直接通过这个range关键字实现范围查询,

  • gte 大于等于
  • lte 小于等于
  • gt 大于
  • lt 小于
  • now 当前时间
POST /zhs_db/_search
{"query": {"range": {"age": {"gte": 25,"lte": 28}}}
}

1.10,fuzzy模糊查询

fuzzy表示允许在打错字的情况下,将想要查询的数据查询出来。

GET /zhs_db/_search
{"query": {"fuzzy": {"address": {"value": "松山","fuzziness": 1    //表示允许错一个字}}}
}

除了使用上面这种方式,还能用match的方式实现这种错别字的模糊查询

GET /zhs_db/_search
{"query": {"match": {"address": {"query": "松山","fuzziness": 1}}}
}

1.11,highlight查询

就是将query查询出来的结果,通过highlight的方式实现高亮

GET /products/_search
{"query": {"term": {"name": {"value": "牛仔"}}},"highlight": {"fields": {"*":{}}}
}

2,Query DSL多条件查询(高级查询)

2.1,Bool Query布尔查询

在一个bool查询中,可以是一个或者多个查询字句的组合,字句总共有四种,分别是 must、should、must_not、filter,前两者使用时内部会进行算分的操作,后二者不会

must相当于是and操作,即所有几句中的查询条件都要满足。如下must中是一个数组,每个子查询中就是一个正常的query dsl查询,如必须满足中地址字段中带有公园,remark字段中带有北的数据

GET /zhs_db/_search
{"query": {"bool": {"must": [{"match": {"address": "公园"}},{"match": {"remark": "北"}}]}}
}

shouuld 表示的就是一个or的应用,表示只需要满足其中的一个查询字句就能将结果返回

GET /zhs_db/_search
{"query": {"bool": {"should": []}}
}

2.2,Boosting Query权重查询

权重查询是一种控制手段,通过设置boost权重的值来影响最终的查询结果,权重的设置如下

  • 当设置的boost大于1时,查询的的相关性会提高
  • 当设置的boost大于0而小于1时,查询的相关性会降低
  • 当设置的boost的值为负数时,贡献负分

举一个例子,查询一篇文章时,将会员的文章显示在普通用户文章的前面,如下面的代码,先创建一个文章索引,随后插入两条数据,一条是vip用户的,一条是普通用户的,文章标题一样

PUT /article_db
POST /article_db/_bulk
{"index": {"_id": "1"}}
{"title":"java入门","comment":"精通java","type":"vip"}
{"index": {"_id": "2"}}
{"title":"java入门","comment":"精通java","type":"ordinary"}

那么在查询时,想将vip用户的文章排在前面,就可以直接通过设置这个boost权重进行设置,将vip用户的权重值设置为大于1,这样在算分时,算的分值就更大

GET /article_db/_search
{"query": {"bool": {"should": [{"match": {"title": "java入门"}},{"match": {"type": {"query": "vip","boost": 3}}},{"match": {"type": {"query": "ordinary","boost": 1}}}]}}
}

如下图所示,vip的算分为2.6,而普通用户的算分在1.2。如果算分值一样,谁id小谁在前面

在这里插入图片描述

当然如果查询出了不需要的数据,优先考虑通过过滤去掉数据,再考虑降低其权重

2.3,Dis max query 最佳匹配

通过dis_max以及结合queries进行使用,并且可以通过设置这个tie_breaker来确人是最佳匹配,还是所有的字段的值同等重要

POST /article_db/_search
{"query": {"dis_max": {"queries": [{ "match": { "title": "java" }},{ "match": { "comment":  "java" }}],"tie_breaker": 0.5	//0代表使用最佳匹配;1代表所有语句同等重要。}}
}

但是在实际开发中,更加的推荐通过这个multi_match这个方式来实现这个最佳字段匹配,并且设置这个type类型为 best_fields

POST /article_db/_search
{"query": {"multi_match": {"type": "best_fields","query": "java","fields": ["title","comment"],"tie_breaker": 0.2	//0代表使用最佳匹配;1代表所有语句同等重要。}}
}

除了实现最佳匹配之外,multi_match还实现了最多字段匹配,就是将type的类型设置成 most_fields

GET /titles/_search
{"query": {"multi_match": {"query": "java,"type": "most_fields","fields": ["title","comment"]}}
}

2.4,Cross Field跨字段匹配

如在遇到某些场景,需要结合多个字段的值进行匹配,如省市区,在上面讲了一种copy_to的方式解决这种跨字段匹配的方式,也可以使用这个 Cross Field 实现多字段匹配

如先创建一个address_db的地址索引,随后批量的插入一些数据

PUT /address_db
PUT /address_db/_bulk
{ "index": { "_id": "1"} }
{"province": "广东","city": "深圳","region":"南山"}
{ "index": { "_id": "2"} }
{"province": "广东","city": "深圳","region":"福田"}
{ "index": { "_id": "3"} }
{"province": "广东","city": "深圳","region":"宝安"}
{ "index": { "_id": "4"} }
{"province": "广东","city": "深圳","region":"龙岗"}
}

随后通过这个multi_match多字段查询,并且设置type类型为 cross_fields

GET /address_db/_search
{"query": {"multi_match": {"query": "广东深圳宝安","type": "cross_fields","operator": "and", "fields": ["province","city","region"]}}
}

这篇关于【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327931

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE