好像还挺好玩的GAN1——Keras搭建简单GAN生成MNIST手写体

2023-11-02 02:11

本文主要是介绍好像还挺好玩的GAN1——Keras搭建简单GAN生成MNIST手写体,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

好像还挺好玩的GAN1——Keras搭建简单GAN生成MNIST手写体

  • 学习前言
  • 什么是GAN
  • 神经网络构建
    • 1、Generator
    • 2、Discriminator
  • 训练思路
  • 实现全部代码:

学习前言

我又死了我又死了我又死了!
在这里插入图片描述

什么是GAN

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。

在GAN模型中,一般存在两个模块
分别是生成模型(Generative Model)和判别模型(Discriminative Model);二者的互相博弈与学习会产生相当好的输出

原始 GAN 理论中,并不要求生成模型和判别模型都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为生成模型和判别模型 。

一个优秀的GAN应用需要有良好的训练方法,否则可能由于神经网络模型的自由性而导致输出不理想

其实简单来讲,一般情况下,GAN就是创建两个神经网络,一个是生成模型,一个是判别模型

生成模型的输入一行正态分布随机数,输出可以被认为是一张图片(或者其它需要被判定真伪的东西)。
判别模型的输入一张图片(或者其它需要被判定真伪的东西),输出是输入进来的图片是否是真实的(0或者1)。

生成模型不断训练的目的是生成 让判别模型无法判断真伪的输出。
判别模型不断训练的的目的是判断出输入图片的真伪
在这里插入图片描述

神经网络构建

1、Generator

生成网络的目标是输入一行正态分布随机数,生成mnist手写体图片,因此它的输入是一个长度为N的一维的向量,输出一个28,28,1维的图片。

def build_generator(self):# --------------------------------- ##   生成器,输入一串随机数字# --------------------------------- #model = Sequential()model.add(Dense(256, input_dim=self.latent_dim))model.add(LeakyReLU(alpha=0.2))model.add(BatchNormalization(momentum=0.8))model.add(Dense(512))model.add(LeakyReLU(alpha=0.2))model.add(BatchNormalization(momentum=0.8))model.add(Dense(1024))model.add(LeakyReLU(alpha=0.2))model.add(BatchNormalization(momentum=0.8))model.add(Dense(np.prod(self.img_shape), activation='tanh'))model.add(Reshape(self.img_shape))noise = Input(shape=(self.latent_dim,))img = model(noise)return Model(noise, img)

2、Discriminator

判别模型的目的是根据输入的图片判断出真伪。因此它的输入一个28,28,1维的图片,输出是0到1之间的数,1代表判断这个图片是真的,0代表判断这个图片是假的。

def build_discriminator(self):# ----------------------------------- ##   评价器,对输入进来的图片进行评价# ----------------------------------- #model = Sequential()# 输入一张图片model.add(Flatten(input_shape=self.img_shape))model.add(Dense(512))model.add(LeakyReLU(alpha=0.2))model.add(Dense(256))model.add(LeakyReLU(alpha=0.2))# 判断真伪model.add(Dense(1, activation='sigmoid'))img = Input(shape=self.img_shape)validity = model(img)return Model(img, validity)

训练思路

GAN的训练分为如下几个步骤:
1、随机选取batch_size个真实的图片。
2、随机生成batch_size个N维向量,传入到Generator中生成batch_size个虚假图片。
3、真实图片的label为1,虚假图片的label为0,将真实图片和虚假图片当作训练集传入到Discriminator中进行训练。
4、将虚假图片的Discriminator预测结果与1的对比作为loss对Generator进行训练(与1对比的意思是,如果Discriminator将虚假图片判断为1,说明这个生成的图片很“真实”)。

实现全部代码:

from __future__ import print_function, divisionfrom keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adamimport matplotlib.pyplot as pltimport sys
import os
import numpy as npclass GAN():def __init__(self):# --------------------------------- ##   行28,列28,也就是mnist的shape# --------------------------------- #self.img_rows = 28self.img_cols = 28self.channels = 1# 28,28,1self.img_shape = (self.img_rows, self.img_cols, self.channels)self.latent_dim = 100# adam优化器optimizer = Adam(0.0002, 0.5)self.discriminator = self.build_discriminator()self.discriminator.compile(loss='binary_crossentropy',optimizer=optimizer,metrics=['accuracy'])self.generator = self.build_generator()gan_input = Input(shape=(self.latent_dim,))img = self.generator(gan_input)# 在训练generate的时候不训练discriminatorself.discriminator.trainable = False# 对生成的假图片进行预测validity = self.discriminator(img)self.combined = Model(gan_input, validity)self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)def build_generator(self):# --------------------------------- ##   生成器,输入一串随机数字# --------------------------------- #model = Sequential()model.add(Dense(256, input_dim=self.latent_dim))model.add(LeakyReLU(alpha=0.2))model.add(BatchNormalization(momentum=0.8))model.add(Dense(512))model.add(LeakyReLU(alpha=0.2))model.add(BatchNormalization(momentum=0.8))model.add(Dense(1024))model.add(LeakyReLU(alpha=0.2))model.add(BatchNormalization(momentum=0.8))model.add(Dense(np.prod(self.img_shape), activation='tanh'))model.add(Reshape(self.img_shape))noise = Input(shape=(self.latent_dim,))img = model(noise)return Model(noise, img)def build_discriminator(self):# ----------------------------------- ##   评价器,对输入进来的图片进行评价# ----------------------------------- #model = Sequential()# 输入一张图片model.add(Flatten(input_shape=self.img_shape))model.add(Dense(512))model.add(LeakyReLU(alpha=0.2))model.add(Dense(256))model.add(LeakyReLU(alpha=0.2))# 判断真伪model.add(Dense(1, activation='sigmoid'))img = Input(shape=self.img_shape)validity = model(img)return Model(img, validity)def train(self, epochs, batch_size=128, sample_interval=50):# 获得数据(X_train, _), (_, _) = mnist.load_data()# 进行标准化X_train = X_train / 127.5 - 1.X_train = np.expand_dims(X_train, axis=3)# 创建标签valid = np.ones((batch_size, 1))fake = np.zeros((batch_size, 1))for epoch in range(epochs):# --------------------------- ##   随机选取batch_size个图片#   对discriminator进行训练# --------------------------- #idx = np.random.randint(0, X_train.shape[0], batch_size)imgs = X_train[idx]noise = np.random.normal(0, 1, (batch_size, self.latent_dim))gen_imgs = self.generator.predict(noise)d_loss_real = self.discriminator.train_on_batch(imgs, valid)d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)# --------------------------- ##  训练generator# --------------------------- #noise = np.random.normal(0, 1, (batch_size, self.latent_dim))g_loss = self.combined.train_on_batch(noise, valid)print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))if epoch % sample_interval == 0:self.sample_images(epoch)def sample_images(self, epoch):r, c = 5, 5noise = np.random.normal(0, 1, (r * c, self.latent_dim))gen_imgs = self.generator.predict(noise)gen_imgs = 0.5 * gen_imgs + 0.5fig, axs = plt.subplots(r, c)cnt = 0for i in range(r):for j in range(c):axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')axs[i,j].axis('off')cnt += 1fig.savefig("images/%d.png" % epoch)plt.close()if __name__ == '__main__':if not os.path.exists("./images"):os.makedirs("./images")gan = GAN()gan.train(epochs=30000, batch_size=256, sample_interval=200)

实现效果为:
在这里插入图片描述

这篇关于好像还挺好玩的GAN1——Keras搭建简单GAN生成MNIST手写体的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327385

相关文章

如何使用Haporxy搭建Web群集

《如何使用Haporxy搭建Web群集》Haproxy是目前比较流行的一种群集调度工具,同类群集调度工具有很多如LVS和Nginx,本案例介绍使用Haproxy及Nginx搭建一套Web群集,感兴趣的... 目录一、案例分析1.案例概述2.案例前置知识点2.1 HTTP请求2.2 负载均衡常用调度算法 2.

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事