「营业日志 2021.1.14」Zeilberger 老爷子的 T 恤上写了啥?

2023-11-02 01:20

本文主要是介绍「营业日志 2021.1.14」Zeilberger 老爷子的 T 恤上写了啥?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
这是一张 Wikipedia 上找到的图。其中写的恒等式是这样的:
∑ k ( n k ) 2 ( 3 n + k 2 n ) = ( 3 n n ) 2 \sum_k \binom n k^2 \binom {3n+k}{2n} = \binom{3n}n^2 k(kn)2(2n3n+k)=(n3n)2

20 世纪 90 年代,组合学家 Wilf 和 Zeilberger 发展了组合恒等式机器证明的算法理论,即 WZ 理论。该理论彻底改变了组合恒等式与特殊函数研究的面貌。计算机科学大师 Knuth 认为该理论将数学中一些重要的部分从艺术转变成科学。在 1996 年,Wilf 和 Zeilberger 也因此项奠基性工作获得美国数学会的 Leroy P. Steel 奖。WZ 理论及其相关应用促进了组合数学与符号计算的交互。许多组合问题,如组合恒等式证明,格路计数问题,组合序列的同余、整除、单峰性质等等,可以借助符号计算的算法与软件得到解决或验证。
——组合恒等式机器证明中的 Wilf-Zeilberger 猜想的解决

不过其实这件 T 恤上的恒等式并不恐怖,让我们来简单推导一下。

∑ k ( n k ) 2 ( 3 n + k 2 n ) = ∑ k ( [ x k ] ( 1 + x ) n ) ( [ x n − k ] ( 1 + x ) n ) [ y 2 n ] ( 1 + y ) 3 n + k = [ x n y 2 n ] ( 1 + x ) n ( ( 1 + y ) + x ) n ( 1 + y ) 3 n = [ x n y 2 n ] ( 1 + x ) n ( 1 + x + y ) n ( 1 + y ) 3 n \begin{aligned} &\quad \sum_k \binom n k^2 \binom {3n+k}{2n}\\ &= \sum_k ([x^k](1+x)^n)([x^{n-k}](1+x)^n)[y^{2n}](1+y)^{3n+k}\\ &= [x^ny^{2n}] (1+x)^n((1+y)+x)^n(1+y)^{3n}\\ &= [x^ny^{2n}] (1+x)^n(1+x+y)^n(1+y)^{3n} \end{aligned} k(kn)2(2n3n+k)=k([xk](1+x)n)([xnk](1+x)n)[y2n](1+y)3n+k=[xny2n](1+x)n((1+y)+x)n(1+y)3n=[xny2n](1+x)n(1+x+y)n(1+y)3n

接下来我们改为枚举第二个括号中的 y y y,就会得到

= ∑ k ( n k ) ( n + k n ) ( 3 n 2 n − k ) = ∑ k ( n k ) ( 3 n 2 n − k , n , k ) = ∑ k ( n k ) ( 2 n 2 n − k ) ( 3 n n ) = ( 3 n n ) 2 \begin{aligned} &= \sum_k \binom n k\binom {n+k}n \binom{3n}{2n-k}\\ &= \sum_k \binom n k\binom{3n}{2n-k,n,k}\\ &= \sum_k \binom n k\binom {2n}{2n-k} \binom{3n}{n}\\ &= \binom{3n}n^2 \end{aligned} =k(kn)(nn+k)(2nk3n)=k(kn)(2nk,n,k3n)=k(kn)(2nk2n)(n3n)=(n3n)2

这篇关于「营业日志 2021.1.14」Zeilberger 老爷子的 T 恤上写了啥?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/327099

相关文章

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Nacos日志与Raft的数据清理指南

《Nacos日志与Raft的数据清理指南》随着运行时间的增长,Nacos的日志文件(logs/)和Raft持久化数据(data/protocol/raft/)可能会占用大量磁盘空间,影响系统稳定性,本... 目录引言1. Nacos 日志文件(logs/ 目录)清理1.1 日志文件的作用1.2 是否可以删除

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

使用nohup和--remove-source-files在后台运行rsync并记录日志方式

《使用nohup和--remove-source-files在后台运行rsync并记录日志方式》:本文主要介绍使用nohup和--remove-source-files在后台运行rsync并记录日... 目录一、什么是 --remove-source-files?二、示例命令三、命令详解1. nohup2.

MySQL精准控制Binlog日志数量的三种方案

《MySQL精准控制Binlog日志数量的三种方案》作为数据库管理员,你是否经常为服务器磁盘爆满而抓狂?Binlog就像数据库的“黑匣子”,默默记录着每一次数据变动,但若放任不管,几天内这些日志文件就... 目录 一招修改配置文件:永久生效的控制术1.定位my.cnf文件2.添加核心参数不重启热更新:高手应

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo