通俗易懂的树状数组详解!请食用!qwq

2023-11-01 23:08

本文主要是介绍通俗易懂的树状数组详解!请食用!qwq,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前:我写的线段树深受好评。于是想写树状数组。持续更新。

树状数组与二进制位有关。和线段树有些相像之处,都是把序列转化成一棵树进行操作。但是有区别。

update 2021.1.3:发现咕了接近2个月,决定写写

part 1 :基本思想

1 二进制分解

如果1个数 a a a 的二进制表示中,为1的为分别为:
a k , 1 , a k , 2 , a k , 3 . . . a k , c n t a_{k,1},a_{k,2},a_{k,3}...a_{k,cnt} ak,1,ak,2,ak,3...ak,cnt

则这个数=
2 k , 1 + 2 k , 2 . . . + 2 k , c n t 2^{k,1}+2^{k,2}...+2^{k,cnt} 2k,1+2k,2...+2k,cnt

这就是二进制分解了。

2 树的由来

我们假设 k 1 > k 2 > k 3 . . . > k c n t k_1>k_2>k_3...>k_{cnt} k1>k2>k3...>kcnt,则区间 [ 1 , n ] [1,n] [1,n] 可以被分成 O ( l o g n ) O(log n) O(logn) 个小区间。

它们分别为:
[ 1 , 2 k 1 ] , [ 2 k 1 + 1 , 2 k 1 + 2 k 2 ] . . . [1,2^{k_1}],[2^{k_1}+1,2^{k_1}+2^{k_2}]... [1,2k1],[2k1+1,2k1+2k2]...

于是有了一棵树。

3 小区间特点

如果区间结尾为 r r r,则区间长度就等于 r r r 的二进制分解中最小的2的次幂。我们用函数 l o w b i t lowbit lowbit来求区间长度。

int lowbit(int x){return x & -x;}

有了这个函数,我们就可以用类似标记的整块修改维护前缀和啦!!!

4 树的性质

我们用数组 s u m [ x ] sum[x] sum[x] 来保存序列 a a a 的区间 [ x − l o w b i t ( x ) + 1 , x ] [x-lowbit(x)+1,x] [xlowbit(x)+1,x] 中所有数的和,则数组 s u m sum sum 就是一个树形结构。

这就是我们的树状数组啦!

图解:

图中红色节点忽略不计qwq

在这个结构中:

1.每个节点保存以它为根的子树中所有叶节点的和

2.每个节点 s u m [ x ] sum[x] sum[x] 的子节点(指最底层的叶子结点!)个数等于 l o w b i t ( x ) lowbit(x) lowbit(x) 的值。

笔者的书本上没有括号内容,然而我经过研究后发现,是指叶子结点的值。如4有1.2.3.4这4个叶子结点,对吧?所以 l o w b i t ( 4 ) = 4 lowbit(4)=4 lowbit(4)=4 。但是4有7个子节点(A4个,C3个)。

3.除了根节点,每个节点 s u m [ x ] sum[x] sum[x] 的父亲节点是 s u m [ x + l o w b i t ( x ) ] sum[x+lowbit(x)] sum[x+lowbit(x)]

4.一整颗树的深度为 O ( l o g N ) O(log N) O(logN)

基本思想讲完了!

part 2 :常支持的操作

树状数组资瓷查询前缀和(自然可以区间和啦!),单点修改,求逆序对(和正序对),区间修改等。

好的,下一部分qwq。

part 3 :代码

像这种数据结构(线段树,分块…)基本都有整体修改的标记,对吧qwq?

前缀和:

遍历一个节点的子树中的子节点,就可以了。

int ask(int x){int res=0;for(;x;x-=lowbit(x))res+=sum[x];return res;
} 

单点修改:

这个操作除了修改,还要维护前缀和,所以我们要对一个节点的祖先进行遍历,从下往上修改。这样子修改完,前缀和一定也是正确维护的。

void add(int x,int val){for(;x<=n;x+=lowbit(x))sum[x]+=val;
}//n为原始数列中元素个数 

区间修改:

我们新建一个数组 b b b,把一次区间修改(在区间 [ l , r ] [l,r] [l,r] 中,把每一个值加上 v a l val val)转化为:

b [ l ] b[l] b[l] 处加上 v a l val val,在 b [ r + 1 ] b[r+1] b[r+1] 处减去 v a l val val

原理是前缀和。在区间 [ 1 , l − 1 ] [1,l-1] [1,l1] 中,前缀和不变;在区间 [ l , r ] [l,r] [l,r] 中,前缀和增加了 v a l val val;在区间 [ r + 1 , n ] [r+1,n] [r+1,n] 中,前缀和不变(加 v a l val val 和减去 v a l val val 抵消)。

正确性使然。

这里的加是指单点修改。

不要直接 s u m [ x ] + = v a l sum[x]+=val sum[x]+=val,会气死我的

区间和(区间查询):

这种题的区间修改和上面类似,但是要改一下,因为还要执行区间和操作。我们使用两个树状数组 c 1 c1 c1 c 2 c2 c2

它们初始值为0。

对于修改区间 [ l , r ] [l,r] [l,r],我们执行四次操作:

c 1 c1 c1 中,add(l,val);add(r+1,-val);

c 2 c2 c2 中,add(l,l*val);add(r+1,-(r+1)*val);

我们还要用 一个 数组储存数列原本的前缀和。

下面,对于每一个区间查询,我们分成1到 r r r 和1到 l − 1 l-1 l1两个部分,查询结果就是二者相减。

int ask_lr(int l,int r){int ans=sum[r]+(r+1)*ask_c1(r)-ask_c2(r);ans-=(sum[l-1]+l*ask_c1(l-1)-ask_c2(l-1));return ans;
} //ask_c1是对c1的操作,ask_c2是对c2的操作,sum记录原始前缀和

这个式子好好理解下吧!

讲完啦!(注意:根据不同的题目,大部分时候请开long long)

part 4 :练习题

一个比较不错的题单,做做吧

结:

写了怎么久,终于写完啦!

谢谢阅读。

这篇关于通俗易懂的树状数组详解!请食用!qwq的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326398

相关文章

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

SpringBoot请求参数传递与接收示例详解

《SpringBoot请求参数传递与接收示例详解》本文给大家介绍SpringBoot请求参数传递与接收示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录I. 基础参数传递i.查询参数(Query Parameters)ii.路径参数(Path Va