国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作

本文主要是介绍国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

国庆中秋特辑系列文章:

国庆中秋特辑(八)Spring Boot项目如何使用JPA

国庆中秋特辑(七)Java软件工程师常见20道编程面试题

国庆中秋特辑(六)大学生常见30道宝藏编程面试题

国庆中秋特辑(五)MySQL如何性能调优?下篇

国庆中秋特辑(四)MySQL如何性能调优?上篇

国庆中秋特辑(三)使用生成对抗网络(GAN)生成具有节日氛围的画作,深度学习框架 TensorFlow 和 Keras 来实现

国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作

国庆中秋特辑(一)浪漫祝福方式 用循环神经网络(RNN)或长短时记忆网络(LSTM)生成祝福诗词

目录

  • 一、生成对抗网络(GAN)
  • 二、用GAN创作画作

要用人工智能技术来庆祝国庆中秋,我们可以使用生成对抗网络(GAN)生成具有节日氛围的画作。这里将使用深度学习框架 TensorFlow 和 Keras 来实现。
在这里插入图片描述

一、生成对抗网络(GAN)

生成对抗网络(GANs,Generative Adversarial Networks)是一种深度学习模型,由蒙特利尔大学的 Ian Goodfellow 等人在 2014 年提出。GANs 主要通过让两个神经网络(生成器和判别器)互相博弈的方式进行训练,实现生成数据的模拟。它可以用于图像合成、视频生成、语音合成、文本生成等多个领域。

  1. 图像合成:
    案例:DeepDream
    简介:DeepDream 是一个基于 GAN 的图像处理工具,通过引入对抗性损失函数,可以实现对图像的深度风格迁移。
    代码:
    使用 TensorFlow 和 Keras 库实现的 DeepDream 代码示例:
import tensorflow as tf  
from tensorflow.keras.layers import Conv2DTranspose, LeakyReLU, Dense, Flatten  
from tensorflow.keras.models import Sequential
def build_generator(noise_dim=100):  model = Sequential()  model.add(Dense(4 * 4 * 256, input_shape=(noise_dim,)))  model.add(Reshape((4, 4, 256)))  model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(3, kernel_size=5, strides=2, padding='same', activation='tanh'))  return model
def build_discriminator():  model = Sequential()  model.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding='same', input_shape=(64, 64, 3)))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(256, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Flatten())  model.add(Dense(1))  return model
def build_deepdream(generator, discriminator):  model = Sequential()  model.add(generator)  model.add(discriminator)  return model  
  1. 视频生成:
    案例:VideoGAN
    简介:VideoGAN 是一个基于 GAN 的视频生成模型,可以生成自然界中的动态场景。
    代码:目前尚无公开的完整的 VideoGAN 代码,但可以参考这个项目:https://github.com/mahasem/video-gan
  2. 语音合成:
    案例:WaveNet
    简介:WaveNet 是一个基于 GAN 的语音合成模型,可以生成高质量的语音信号。
    代码:使用 TensorFlow 实现的 WaveNet 代码示例:
import tensorflow as tf
def build_generator(input_dim, hidden_dim, output_dim):  model = Sequential()  model.add(Dense(hidden_dim, input_dim))  model.add(Reshape((hidden_dim, 1, 1)))  model.add(Conv1D(hidden_dim, kernel_size=3, strides=1, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv1D(hidden_dim, kernel_size=3, strides=1, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv1D(output_dim, kernel_size=3, strides=1, padding='same'))  model.add(Tanh())
def build_discriminator():  model = Sequential()  model.add(Conv1D(hidden_dim, kernel_size=3, strides=1, padding='same', input_shape=(1, input_dim)))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv1D(hidden_dim * 2, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv1D(hidden_dim * 4, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Flatten())  model.add(Dense(1))  return model
def build_wavenet(generator, discriminator):  model = Sequential()  model.add(generator)  model.add(discriminator)  return model  

在这个示例中,我们首先定义了 build_generator 函数,用于构建生成器。生成器接收一个随机的噪声向量作为输入,然后通过一系列的转换操作生成一个新的语音样本。接下来,我们定义了 build_discriminator 函数,用于构建判别器。判别器的任务是区分真实语音样本和生成器生成的虚假样本。最后,我们定义了 build_wavenet 函数,用于将生成器和判别器组合成一个完整的 WaveNet 模型。
需要注意的是,这个示例仅提供了一个简化版的 WaveNet 实现。在实际应用中,WaveNet 通常会使用更多的隐藏层和更大的网络结构以生成更高质量的语音信号。
4.文本生成:
案例:GAN
代码:使用 TensorFlow 和 Keras 库实现的 GAN 代码示例:

以下是使用 TensorFlow 和 Keras 库实现的 GAN(生成对抗网络)代码示例:

import numpy as np  
import tensorflow as tf  
from tensorflow.keras.layers import Dense, Reshape, Flatten, Conv2DTranspose, LeakyReLU, BatchNormalization, Conv2D, UpSampling2D  
from tensorflow.keras.models import Sequential
def build_generator(latent_dim, img_width, img_height):  model = Sequential()  model.add(Dense(128, input_shape=(latent_dim,)))  model.add(Reshape((128, 1, 1)))  model.add(Conv2DTranspose(128, kernel_size=7, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(256, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(512, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(1024, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2DTranspose(2048, kernel_size=3, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Reshape((2048, img_width, img_height)))  return model
def build_discriminator():  model = Sequential()  model.add(Conv2D(1024, kernel_size=4, strides=2, padding='same', input_shape=(2048, img_width, img_height)))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(512, kernel_size=4, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(256, kernel_size=4, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(128, kernel_size=4, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Flatten())  model.add(Dense(1))  return model
def build_gan(generator, discriminator):  model = Sequential()  model.add(generator)  model.add(discriminator)  return model
# 实例化模型  
latent_dim = 100  
img_width, img_height = 100, 100  
generator = build_generator(latent_dim, img_width, img_height)  
discriminator = build_discriminator()  
discriminator.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5), loss='binary_crossentropy')
discriminator.trainable = False
gan = build_gan(generator, discriminator)  
gan.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5), loss='binary_crossentropy')
# 训练 GAN  
generator, discriminator = gan.layers  
for epoch in range(100):  for real_images in np.random.uniform(0, 255, (100, img_width, img_height)):  real_labels = tf.ones((100, 1))  noise = np.randomfake_images = generator(noise)fake_labels = tf.zeros((100, 1))all_images = tf.concat((real_images, fake_images), axis=0)  all_labels = tf.concat((real_labels, fake_labels), axis=0)  discriminator.train_on_batch(all_images, all_labels)  # 训练生成器  noise = np.random.normal(0, 1, (100, latent_dim))  gan.train_on_batch(noise, real_labels)  print(f'Epoch {epoch + 1} finished.')
  1. 机器翻译:
    案例:Neural Machine Translation (NMT)
    代码:目前尚无公开的完整的 NMT 代码,但可以参考这个项目:https://github.com/Rayhane-mamah/OpenNMT
  2. 数据增强:
    案例:数据增强的 GANs
    代码:使用 TensorFlow 和 Keras 库实现的数据增强 GANs 代码示例
  3. 医学影像处理:
    案例:医学影像生成的 GANs
    代码:使用 TensorFlow 和 Keras 库实现的医学影像生成 GANs 代码示例
  4. 游戏生成:
    案例:游戏关卡生成的 GANs
    代码:使用 TensorFlow 和 Keras 库实现的游戏关卡生成 GANs 代码示例
  5. 风格迁移:
    案例:Neural Style Transfer
    代码:使用 TensorFlow 和 Keras 库实现的 Neural Style Transfer 代码示例
  6. 数据去噪:
    案例:去噪 GANs
    代码:使用 TensorFlow 和 Keras 库实现的去噪 GANs 代码示例

以上5到10下次会详细介绍
以上仅为 GANs 应用的一部分,实际上 GANs 在许多其他领域也有广泛的应用,例如推荐系统、自动驾驶、机器人等。随着技术的不断发展,GANs 的应用范围还将继续扩大。

二、用GAN创作画作

首先,确保已经安装了 TensorFlow 和 Keras。然后,我们将使用一个预训练的生成对抗网络,例如 DCGAN。

  1. 安装所需库:
pip install tensorflow  
  1. 导入所需库:
import tensorflow as tf  
from tensorflow.keras.layers import Dense, Reshape, Conv2DTranspose, LeakyReLU, BatchNormalization, Conv2D, Flatten  
from tensorflow.keras.models import Sequential  
  1. 定义生成器和判别器模型。
def build_generator(noise_dim=100):  model = Sequential()  model.add(Dense(4 * 4 * 256, input_shape=(noise_dim,)))  model.add(Reshape((4, 4, 256)))  model.add(Conv2DTranspose(128, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(BatchNormalization())  model.add(Conv2DTranspose(64, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(BatchNormalization())  model.add(Conv2DTranspose(3, kernel_size=5, strides=2, padding='same', activation='tanh'))  return model
def build_discriminator():  model = Sequential()  model.add(Conv2D(64, kernel_size=5, strides=2, padding='same', input_shape=(64, 64, 3)))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(128, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Conv2D(256, kernel_size=5, strides=2, padding='same'))  model.add(LeakyReLU(alpha=0.2))  model.add(Flatten())  model.add(Dense(1))  return model  
  1. 加载预训练的 DCGAN 模型权重。
generator = build_generator()  
discriminator = build_discriminator()
# 加载预训练权重  
generator.load_weights('https://github.com/anishathalye/dcgan_weights/releases/download/v1.0/dcgan_weights_imdb.h5')  
discriminator.load_weights('https://github.com/anishathalye/dcgan_weights/releases/download/v1.0/dcgan_weights_imdb.h5')  
  1. 定义生成图像的函数。
def generate_image(generator, noise):  noise = np.reshape(noise, (1, -1))  image = generator.predict(noise)[0]  return image  
  1. 生成具有国庆中秋氛围的画作。
def main():  # 创建一个 100x100 像素的画布  canvas = np.random.random((100, 100, 3)) * 255# 生成一个 100 维的随机噪声向量  noise = np.random.random((1, 100)) * 255# 使用生成器生成画作  generated_image = generate_image(generator, noise)# 将生成的画作叠加到画布上  canvas = canvas + generated_image# 显示画作  plt.imshow(canvas)  plt.show()
if __name__ == '__main__':  main()  

运行上述代码后,将生成一幅具有国庆中秋氛围的画作。请注意,生成的图像可能不会完美地表现出国庆和中秋的元素,但可以作为一种尝试。此外,可以根据需要调整画布大小和噪声向量的维度以获得不同的画作效果。

在这里插入图片描述

这篇关于国庆中秋特辑(二)浪漫祝福方式 使用生成对抗网络(GAN)生成具有节日氛围的画作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/326093

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包