【2021集创赛】海云捷迅杯一等奖:基于稀疏卷积与层融合的流水线优化方案

本文主要是介绍【2021集创赛】海云捷迅杯一等奖:基于稀疏卷积与层融合的流水线优化方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海云捷迅杯:基于FPGA C5Soc的MobileNetV1 SSD目标检测方案设计

本作品参与极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动。

**杯赛题目:**海云捷迅杯——基于FPGA C5Soc的MobileNetV1 SSD目标检测方案设计
设计任务:

  1. 基于已训练好的SSD模型参数文件、基于已有的Intel FPGA工程网表文件、Linux-C5soc平台的Paddle-Paddle框架驱动为参考,优化或者重新设计加速器以及对应驱动,并部署SSD模型到FPGA进行推理。
  2. 对方案进行评估和实现。
  3. 提出设计方案,提升性能并实现。

团队介绍

**参赛单位:**南京大学
**队伍名称:**爱卡丝俱乐部
**指导老师:**王中风
**参赛队员:**薛睿鑫、程昕、苏天祺
**总决赛奖项:**一等奖和企业大奖

项目介绍

本项目采用Intel Cyclone V系列的SoC芯片进行开发,部署以MobileNet V1为backbone的SSD目标检测模型,对硬软件进行协同优化,以提高目标检测效率。整个系统包括PS (processing system) 端和PL (programmable logic) 端两部分,PS端包括ARM处理器、Memory,负责数据传输及计算流程的预处理和控制;PL端则包括卷积和偏置激活计算单元、SRAM等,负责对高负载的运算进行加速。PL端的数据通过Avalon总线与DRAM进行交互。

我们在量化排序传输计算流水线这五个方面对系统进行了优化,具体的优化手段如下图所示。通过上述优化,目标检测的速度提升超过3.5倍

在这里插入图片描述

我们的技术创新点体现在以下几个方面:

  1. 重新设计了稀疏卷积的数据流,采用Row-wise、Weight stationary的滑窗卷积方式,将计算并行度提高到96,并支持channel-wise的input数据稀疏,提高了FPGA上数据的复用性,大大减少数据的传输量,从而减少数据的传输时间、降低功耗。
  2. 采用层融合方式处理每层的偏置和激活操作,在FPGA上的卷积计算完成后,将结果直接传到偏置激活计算单元进行计算,再将偏置激活的计算结果经过SRAM传到片外。这样一方面能够加速偏置激活的计算,另一方面,经过偏置激活的计算后,数据能够支持量化为更低比特而不损失精度,从而进一步减少数据的传输。
  3. 增加input、weight、bias和output四个 Ping Pong Buffer,使数据传输与计算时间能够重叠,这样进一步优化了数据计算的流水线,在同一时间内进行数据传输和计算,从而实现对系统的加速。
  4. 在进行模型预测之前将量化并重排的权重和偏置保存,避免每次预测时对权重和偏置数据的重复量化和重排。

系统架构

为实现快速的目标检测效果,我们设计的系统整体架构图如下图所示。数据经UpSizer和BusMatrix单元进行仲裁,存储到相应的SRAM中。当计算开始时,卷积模块可以直接从SRAM中读取数据,卷积的结果直接传入BiasRelu单元进行计算,再写入Output Ping Pong Buffer,最终的output再经过BusMatrix和UpSizer单元传回DRAM。

在这里插入图片描述

优化效果

经过充分的仿真验证和上板调试,系统能够正确完成目标检测任务,最终的目标识别速度能够达到最快每张图836ms

在这里插入图片描述

我们统计了优化前后卷积层的加速比,结果如下图所示,相比原始优化前的系统,我们的加速系统能够实现最高39倍加速比平均4.5倍加速比

在这里插入图片描述

参赛体会

这次比赛,给了我们一个很好的机会,提升硬软件协同开发的能力。从硬件数据流的设计到代码的调试,我们一步一个脚印,提出了很多优化的方案,并评估它们的可行性,最终实现了上面所述的加速系统。团队的成员也能够优势互补,在讨论中碰撞出了很多火花。非常感谢实验室的学长学姐和赛事指导老师曾给予我们的帮助,在我们遇到难题时帮助我们指明解决问题的方向。

在这里插入图片描述

未来展望

  1. 针对深度卷积进行层融合优化。将深度卷积与前一层的卷积融合,减少中间数据的传输。
  2. 利用DMA进行片上与片下数据的传输,提高传输效率。
  3. 探索更加有效的量化方式,能够进一步减少数据的传输量的同时保持精度。

总结

我们在官方提供的系统基础上进行优化,成功在Intel Cyclon V SoC芯片上部署了以MobileNet v1为backbone网络的SSD目标检测模型,联合优化ARM端和FPGA端,实现了硬件加速效果。
我们有针对性地设计了稀疏卷积和偏置激活计算的数据流,提高FPGA上数据的复用性,减少数据传输;偏置激活的计算与卷积采用层融合的流水线进行优化,能够在加速偏置激活计算的同时,实现更低比特的数据量化,进一步减少数据的传输;Ping Pong Buffer优化的数据传输与计算流水线,使得数据的计算和传输能够在同一时间进行,减少了计算的空闲状态;此外,我们还优化了模型的量化操作,在进行模型预测之前将量化后的权重和偏置保存,避免每次量化时对权重和偏置数据的重复量化。以上工作共同作用,大大优化了系统的整体性能,提升计算速度。
最后的实验结果表明,我们的设计分别在模型中的普通卷积层和逐点卷积层上实现了最高39×和平均4.5×的加速比。在上板测试中,我们在保证结果正确的情况下,将单张图片的识别速度从3000ms提升到了836ms,取得了超过3.5倍的速度提升。

作品内容来源于爱卡丝俱乐部,转载请标明出处。欢迎大家参加极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动,10月1日截止~

这篇关于【2021集创赛】海云捷迅杯一等奖:基于稀疏卷积与层融合的流水线优化方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/325279

相关文章

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R