【2021集创赛】海云捷迅杯一等奖:基于稀疏卷积与层融合的流水线优化方案

本文主要是介绍【2021集创赛】海云捷迅杯一等奖:基于稀疏卷积与层融合的流水线优化方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海云捷迅杯:基于FPGA C5Soc的MobileNetV1 SSD目标检测方案设计

本作品参与极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动。

**杯赛题目:**海云捷迅杯——基于FPGA C5Soc的MobileNetV1 SSD目标检测方案设计
设计任务:

  1. 基于已训练好的SSD模型参数文件、基于已有的Intel FPGA工程网表文件、Linux-C5soc平台的Paddle-Paddle框架驱动为参考,优化或者重新设计加速器以及对应驱动,并部署SSD模型到FPGA进行推理。
  2. 对方案进行评估和实现。
  3. 提出设计方案,提升性能并实现。

团队介绍

**参赛单位:**南京大学
**队伍名称:**爱卡丝俱乐部
**指导老师:**王中风
**参赛队员:**薛睿鑫、程昕、苏天祺
**总决赛奖项:**一等奖和企业大奖

项目介绍

本项目采用Intel Cyclone V系列的SoC芯片进行开发,部署以MobileNet V1为backbone的SSD目标检测模型,对硬软件进行协同优化,以提高目标检测效率。整个系统包括PS (processing system) 端和PL (programmable logic) 端两部分,PS端包括ARM处理器、Memory,负责数据传输及计算流程的预处理和控制;PL端则包括卷积和偏置激活计算单元、SRAM等,负责对高负载的运算进行加速。PL端的数据通过Avalon总线与DRAM进行交互。

我们在量化排序传输计算流水线这五个方面对系统进行了优化,具体的优化手段如下图所示。通过上述优化,目标检测的速度提升超过3.5倍

在这里插入图片描述

我们的技术创新点体现在以下几个方面:

  1. 重新设计了稀疏卷积的数据流,采用Row-wise、Weight stationary的滑窗卷积方式,将计算并行度提高到96,并支持channel-wise的input数据稀疏,提高了FPGA上数据的复用性,大大减少数据的传输量,从而减少数据的传输时间、降低功耗。
  2. 采用层融合方式处理每层的偏置和激活操作,在FPGA上的卷积计算完成后,将结果直接传到偏置激活计算单元进行计算,再将偏置激活的计算结果经过SRAM传到片外。这样一方面能够加速偏置激活的计算,另一方面,经过偏置激活的计算后,数据能够支持量化为更低比特而不损失精度,从而进一步减少数据的传输。
  3. 增加input、weight、bias和output四个 Ping Pong Buffer,使数据传输与计算时间能够重叠,这样进一步优化了数据计算的流水线,在同一时间内进行数据传输和计算,从而实现对系统的加速。
  4. 在进行模型预测之前将量化并重排的权重和偏置保存,避免每次预测时对权重和偏置数据的重复量化和重排。

系统架构

为实现快速的目标检测效果,我们设计的系统整体架构图如下图所示。数据经UpSizer和BusMatrix单元进行仲裁,存储到相应的SRAM中。当计算开始时,卷积模块可以直接从SRAM中读取数据,卷积的结果直接传入BiasRelu单元进行计算,再写入Output Ping Pong Buffer,最终的output再经过BusMatrix和UpSizer单元传回DRAM。

在这里插入图片描述

优化效果

经过充分的仿真验证和上板调试,系统能够正确完成目标检测任务,最终的目标识别速度能够达到最快每张图836ms

在这里插入图片描述

我们统计了优化前后卷积层的加速比,结果如下图所示,相比原始优化前的系统,我们的加速系统能够实现最高39倍加速比平均4.5倍加速比

在这里插入图片描述

参赛体会

这次比赛,给了我们一个很好的机会,提升硬软件协同开发的能力。从硬件数据流的设计到代码的调试,我们一步一个脚印,提出了很多优化的方案,并评估它们的可行性,最终实现了上面所述的加速系统。团队的成员也能够优势互补,在讨论中碰撞出了很多火花。非常感谢实验室的学长学姐和赛事指导老师曾给予我们的帮助,在我们遇到难题时帮助我们指明解决问题的方向。

在这里插入图片描述

未来展望

  1. 针对深度卷积进行层融合优化。将深度卷积与前一层的卷积融合,减少中间数据的传输。
  2. 利用DMA进行片上与片下数据的传输,提高传输效率。
  3. 探索更加有效的量化方式,能够进一步减少数据的传输量的同时保持精度。

总结

我们在官方提供的系统基础上进行优化,成功在Intel Cyclon V SoC芯片上部署了以MobileNet v1为backbone网络的SSD目标检测模型,联合优化ARM端和FPGA端,实现了硬件加速效果。
我们有针对性地设计了稀疏卷积和偏置激活计算的数据流,提高FPGA上数据的复用性,减少数据传输;偏置激活的计算与卷积采用层融合的流水线进行优化,能够在加速偏置激活计算的同时,实现更低比特的数据量化,进一步减少数据的传输;Ping Pong Buffer优化的数据传输与计算流水线,使得数据的计算和传输能够在同一时间进行,减少了计算的空闲状态;此外,我们还优化了模型的量化操作,在进行模型预测之前将量化后的权重和偏置保存,避免每次量化时对权重和偏置数据的重复量化。以上工作共同作用,大大优化了系统的整体性能,提升计算速度。
最后的实验结果表明,我们的设计分别在模型中的普通卷积层和逐点卷积层上实现了最高39×和平均4.5×的加速比。在上板测试中,我们在保证结果正确的情况下,将单张图片的识别速度从3000ms提升到了836ms,取得了超过3.5倍的速度提升。

作品内容来源于爱卡丝俱乐部,转载请标明出处。欢迎大家参加极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动,10月1日截止~

这篇关于【2021集创赛】海云捷迅杯一等奖:基于稀疏卷积与层融合的流水线优化方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/325279

相关文章

电脑找不到mfc90u.dll文件怎么办? 系统报错mfc90u.dll丢失修复的5种方案

《电脑找不到mfc90u.dll文件怎么办?系统报错mfc90u.dll丢失修复的5种方案》在我们日常使用电脑的过程中,可能会遇到一些软件或系统错误,其中之一就是mfc90u.dll丢失,那么,mf... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包

电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案

《电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案》最近有不少兄弟反映,电脑突然弹出“mfc100u.dll已加载,但找不到入口点”的错误提示,导致一些程序无法正... 在计算机使用过程中,我们经常会遇到一些错误提示,其中最常见的就是“找不到指定的模块”或“缺少某个DL

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis