推荐系统遇上深度学习(一零六)-神经网络与逻辑推理相结合的NLR框架

本文主要是介绍推荐系统遇上深度学习(一零六)-神经网络与逻辑推理相结合的NLR框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天跟大家分享一篇比较有意思的文章,将逻辑推理的思路应用在推荐系统中,一起来看下吧。

1、背景

协同过滤是推荐系统中一种非常重要的方法。目前协同过滤的方法大都基于相似度匹配的思想,即学习用户和商品的表示,然后利用相似度函数来进行推荐,如基于矩阵分解的思路(下图中的(a)),使用内积函数作为匹配函数计算相似度得分。在此基础上,基于上下文的CF,进一步考虑了上下文信息如时间、地点、文本图片等信息,如下图中的(b)方法。

基于相似度匹配思路的协同过滤方法在现实世界许多推荐系统中取得了不错的效果。但论文认为推荐是认知任务而不是感知任务,不仅仅需要具备模式识别和匹配的能力,还需要认知推理的能力,因为用户的未来行为可能不会简单地由其与先前行为的相似性来决定,而是由用户关于下一步行为的认知推理决定。例如,当用户买过一个笔记本电脑之后,下一步不会继续买相似的笔记本电脑,而是有更大的可能去买电脑配件。

用户认知推理的过程可以表示成逻辑表达式的形式,如(a∨b)∧¬c-->v(其中∨表示或,∧表示与,¬表示非)表达的含义是如果用户喜欢a或者b,同时不喜欢c,那么他有可能喜欢v。从把推荐当作一个认知推理任务的角度来说,我们希望推荐模型能够发现和归纳数据中存在的逻辑关系。

那么如何让模型具备更好的推理能力呢?接下来,我们首先介绍下逻辑符号定义,然后再介绍论文提出的NEURAL LOGIC RECOMMENDATION(NLR)框架。

2、逻辑符号&表达式介绍

三个基本的逻辑符号分别是逻辑与∧、逻辑或∨和逻辑非¬。进一步,(x∧y)称为逻辑子式,(x∧y)V(a∧b∧c)称为逻辑表达式。

逻辑表达式需要满足一些定律,如两次取非等于原式:¬(¬x)=x,再比如常用的德摩根定律:¬(x∧y)等价于¬x∨¬y,¬(x∨y)等价于¬x∧¬y。一些常用的逻辑等式关系如下表所示:

另一个常用的逻辑操作称为material implication(实质蕴含),它等价于下面的逻辑运算:

x-->y的含义是,x为真,则y也为真,而¬x∨y要想为真,在x为真的情况下,y必为真(因为¬x是假),所以二者是等价的。

好了,介绍了逻辑符号和表达式的含义之后,接下来介绍NLR框架。

3、NLR框架

本节,我们先介绍基于隐式反馈的推理模型,再介绍基于显式反馈的推理,二者的过程较为相似,因此基于显式反馈的推理只会进行粗略的介绍。

3.1 基于隐式反馈的推理

隐式反馈的数据中,我们仅能知道用户与哪些item进行过交互,但并不知道用户是否真的喜欢这些item,假设用户交互过a,b,c三个item,接下来我们想要判断用户是否对v感兴趣,即判断下面的逻辑表达式是否正确:

基于第二节中的介绍,上式可以进一步转换成:

image.png

再基于德摩根定律,进行进一步转换:

ok,那么我们就可以基于上面两个公式中任意一个来构造网络。c出于简单的考虑,选择了后一个公式(后一个公式只用到了两种逻辑运算,而前一个公式包含三种逻辑运算)。由此构造的网络结构如下图所示:

假设用户u1与v1,v2,v3有过交互,并预测用户是否会与v4进行交互。首先,用户和item都会转换为对应的embedding,并进行拼接,得到<u1,v1>,<u1,v2>,<u1,v3>,<u1,v4>。接下来,通过如下的非线性变换进行转换:

eji表示用户i和item j的embedding经过转换后得到的向量。接下来,我们的目标就是计算如下的逻辑表达式是否为真:

这里,各种逻辑操作均是通过一个多层全连接网络实现,例如逻辑非¬对应的网络输入原始向量,输出一个表示非关系的向量;逻辑或输入两个原始向量,输出一个表示二者或关系的向量。那么,上式的网络结构表示如下:

由于我们需要计算的是多个向量的逻辑或,而逻辑或网络输入的是两个向量,所以需要采用一种循环的方式得到最后的向量。

计算得到逻辑表达式的结果之后,如何计算v4的推荐得分呢?这里,引入两个随机初始化且不会进行梯度更新的向量T和F,分别代表True和False。如果表达式最终计算得到的向量与T接近,则认为v4应该被推荐,反之,则不进行推荐。距离计算使用cosine距离。

到这里看似已经结束了,但我们仍忽略了一个比较重要的问题,上述将三个基本的逻辑运算定义为了神经网络的形式,那么各网络的输出是否符合逻辑运算的基本形式呢?逻辑非对应的网络输出的结果是否是输入向量的非呢?这里我们通过一系列的正则项损失进行约束。

以逻辑非为例,两次逻辑非的结果和原结果应该相同,那么很容易以此为条件设计正则项损失,即计算连续经过两次逻辑非网络得到的向量,与输入向量的距离,距离越大,则损失越大:

其余不同逻辑运算的正则项损失计算如下表所示,本文不再详述:

模型训练采用pairwise的形式,即对同一个用户,同时计算一个正样本和一个负样本的推荐得分,并且希望正样本的得分比负样本得分尽可能高。而最终的损失包含两部分,一部分是pairwise的损失(又包括bpr loss和l2 loss),另一部分是逻辑正则项loss。具体计算公式如下:

3.2 基于显式反馈的推理

使用显式反馈数据进行推理的过程与使用隐式反馈数据过程类似,假设用户对v1和v2有正向的反馈,对v3有负向反馈,那么是否给用户推荐v4可以表示成如下的逻辑表达式:

进一步转换得到:

这里使用两次逻辑非运算而非直接使用原始向量,其目的是为了使逻辑非网络学习得更好。其余过程与使用隐式反馈数据计算过程相似,不再赘述。

4、实验结果及分析

最后来简单看一下实验结果。首先是本文提出的NLR框架与baseline模型的对比,其中NLR-I代表基于隐式反馈数据训练的模型,NLR-E代表基于显式反馈模型训练的模型,从下表数据看,NLR效果远好于各baseline模型,而NLR-E效果好于NLR-I。

再来看一下逻辑正则损失对于模型的提升效果,NLR-Emod代表没有加入逻辑正则损失训练得到的模型,可以看到,其效果是差于NLR-E的,因此逻辑正则损失对于模型效果的提升,具有正向的作用。

好了,论文还是比较有意思的,感兴趣的同学可以翻阅原文哟~


http://www.taodudu.cc/news/show-8123356.html

相关文章:

  • 初识DetNet:确定性网络的前世今生
  • 【智能制造】TSN联手OPC UA,将是阿里、腾讯、华为们直达工业4.0的特快通道?
  • docker 笔记整理
  • 作为前端必须知道的HTML知识
  • Docker实用篇-Docker的基本操作(各种命令、镜像和容器、数据卷挂载)、Dockerfile自定义镜像(基于现有镜像创建)、Docker-Compose(集群部署)、Docker镜像仓库(私)
  • Hexo搭建博客教程
  • 两个linux 共享文件夹,多学一点(二)——在 Linux 下挂载 Windows 共享目录、使用 scp 命令在两台 Linux 间传输数据...
  • Go并发编程基础
  • GoLang之标准库Context包
  • go-etcd
  • go语言中的context
  • 有趣的 Go HttpClient 超时机制
  • Go并发编程-Context包
  • go语言Context标准库
  • Go 的标准库 Context 理解
  • 【搞定Go语言】第3天7:Go标准库Context
  • 29. Go语言标准库之Context
  • Go并发编程学习总结
  • Context标准库
  • Golang 标准库context.Context
  • Go标准库Context包:单个请求多个goroutine 之间与请求域的数据、取消信号、截止时间等相关操作
  • 20-Go语言之context
  • Golang 标准库context的基本使用
  • MySQL 5.5 NDB集群查看日志
  • 程序员能考哪些证书?
  • 程序员可以考哪些证书
  • —— GPS测量原理及应用复习-2 ——
  • 搞清楚电场Ex,Ey,Ez,normE(电场模)场分布的影响,看懂了这些不需要看磁场就能明白基本上所有的场分布知识...
  • Cesium最新基础教程系列4—坐标转换(平面坐标系,笛卡尔空间直角坐标系,弧度,经纬度,屏幕坐标)
  • 【内网流量操控技术六】icmp隧道之icmpsh
  • 这篇关于推荐系统遇上深度学习(一零六)-神经网络与逻辑推理相结合的NLR框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/324710

    相关文章

    Mac系统下卸载JAVA和JDK的步骤

    《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

    CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

    《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos

    Java SWT库详解与安装指南(最新推荐)

    《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

    基于Python实现一个简单的题库与在线考试系统

    《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

    Go学习记录之runtime包深入解析

    《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

    Java日期类详解(最新推荐)

    《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur

    Linux系统中的firewall-offline-cmd详解(收藏版)

    《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

    Python中文件读取操作漏洞深度解析与防护指南

    《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

    Android学习总结之Java和kotlin区别超详细分析

    《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

    Windows 系统下 Nginx 的配置步骤详解

    《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压