推荐系统遇上深度学习(一零六)-神经网络与逻辑推理相结合的NLR框架

本文主要是介绍推荐系统遇上深度学习(一零六)-神经网络与逻辑推理相结合的NLR框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天跟大家分享一篇比较有意思的文章,将逻辑推理的思路应用在推荐系统中,一起来看下吧。

1、背景

协同过滤是推荐系统中一种非常重要的方法。目前协同过滤的方法大都基于相似度匹配的思想,即学习用户和商品的表示,然后利用相似度函数来进行推荐,如基于矩阵分解的思路(下图中的(a)),使用内积函数作为匹配函数计算相似度得分。在此基础上,基于上下文的CF,进一步考虑了上下文信息如时间、地点、文本图片等信息,如下图中的(b)方法。

基于相似度匹配思路的协同过滤方法在现实世界许多推荐系统中取得了不错的效果。但论文认为推荐是认知任务而不是感知任务,不仅仅需要具备模式识别和匹配的能力,还需要认知推理的能力,因为用户的未来行为可能不会简单地由其与先前行为的相似性来决定,而是由用户关于下一步行为的认知推理决定。例如,当用户买过一个笔记本电脑之后,下一步不会继续买相似的笔记本电脑,而是有更大的可能去买电脑配件。

用户认知推理的过程可以表示成逻辑表达式的形式,如(a∨b)∧¬c-->v(其中∨表示或,∧表示与,¬表示非)表达的含义是如果用户喜欢a或者b,同时不喜欢c,那么他有可能喜欢v。从把推荐当作一个认知推理任务的角度来说,我们希望推荐模型能够发现和归纳数据中存在的逻辑关系。

那么如何让模型具备更好的推理能力呢?接下来,我们首先介绍下逻辑符号定义,然后再介绍论文提出的NEURAL LOGIC RECOMMENDATION(NLR)框架。

2、逻辑符号&表达式介绍

三个基本的逻辑符号分别是逻辑与∧、逻辑或∨和逻辑非¬。进一步,(x∧y)称为逻辑子式,(x∧y)V(a∧b∧c)称为逻辑表达式。

逻辑表达式需要满足一些定律,如两次取非等于原式:¬(¬x)=x,再比如常用的德摩根定律:¬(x∧y)等价于¬x∨¬y,¬(x∨y)等价于¬x∧¬y。一些常用的逻辑等式关系如下表所示:

另一个常用的逻辑操作称为material implication(实质蕴含),它等价于下面的逻辑运算:

x-->y的含义是,x为真,则y也为真,而¬x∨y要想为真,在x为真的情况下,y必为真(因为¬x是假),所以二者是等价的。

好了,介绍了逻辑符号和表达式的含义之后,接下来介绍NLR框架。

3、NLR框架

本节,我们先介绍基于隐式反馈的推理模型,再介绍基于显式反馈的推理,二者的过程较为相似,因此基于显式反馈的推理只会进行粗略的介绍。

3.1 基于隐式反馈的推理

隐式反馈的数据中,我们仅能知道用户与哪些item进行过交互,但并不知道用户是否真的喜欢这些item,假设用户交互过a,b,c三个item,接下来我们想要判断用户是否对v感兴趣,即判断下面的逻辑表达式是否正确:

基于第二节中的介绍,上式可以进一步转换成:

image.png

再基于德摩根定律,进行进一步转换:

ok,那么我们就可以基于上面两个公式中任意一个来构造网络。c出于简单的考虑,选择了后一个公式(后一个公式只用到了两种逻辑运算,而前一个公式包含三种逻辑运算)。由此构造的网络结构如下图所示:

假设用户u1与v1,v2,v3有过交互,并预测用户是否会与v4进行交互。首先,用户和item都会转换为对应的embedding,并进行拼接,得到<u1,v1>,<u1,v2>,<u1,v3>,<u1,v4>。接下来,通过如下的非线性变换进行转换:

eji表示用户i和item j的embedding经过转换后得到的向量。接下来,我们的目标就是计算如下的逻辑表达式是否为真:

这里,各种逻辑操作均是通过一个多层全连接网络实现,例如逻辑非¬对应的网络输入原始向量,输出一个表示非关系的向量;逻辑或输入两个原始向量,输出一个表示二者或关系的向量。那么,上式的网络结构表示如下:

由于我们需要计算的是多个向量的逻辑或,而逻辑或网络输入的是两个向量,所以需要采用一种循环的方式得到最后的向量。

计算得到逻辑表达式的结果之后,如何计算v4的推荐得分呢?这里,引入两个随机初始化且不会进行梯度更新的向量T和F,分别代表True和False。如果表达式最终计算得到的向量与T接近,则认为v4应该被推荐,反之,则不进行推荐。距离计算使用cosine距离。

到这里看似已经结束了,但我们仍忽略了一个比较重要的问题,上述将三个基本的逻辑运算定义为了神经网络的形式,那么各网络的输出是否符合逻辑运算的基本形式呢?逻辑非对应的网络输出的结果是否是输入向量的非呢?这里我们通过一系列的正则项损失进行约束。

以逻辑非为例,两次逻辑非的结果和原结果应该相同,那么很容易以此为条件设计正则项损失,即计算连续经过两次逻辑非网络得到的向量,与输入向量的距离,距离越大,则损失越大:

其余不同逻辑运算的正则项损失计算如下表所示,本文不再详述:

模型训练采用pairwise的形式,即对同一个用户,同时计算一个正样本和一个负样本的推荐得分,并且希望正样本的得分比负样本得分尽可能高。而最终的损失包含两部分,一部分是pairwise的损失(又包括bpr loss和l2 loss),另一部分是逻辑正则项loss。具体计算公式如下:

3.2 基于显式反馈的推理

使用显式反馈数据进行推理的过程与使用隐式反馈数据过程类似,假设用户对v1和v2有正向的反馈,对v3有负向反馈,那么是否给用户推荐v4可以表示成如下的逻辑表达式:

进一步转换得到:

这里使用两次逻辑非运算而非直接使用原始向量,其目的是为了使逻辑非网络学习得更好。其余过程与使用隐式反馈数据计算过程相似,不再赘述。

4、实验结果及分析

最后来简单看一下实验结果。首先是本文提出的NLR框架与baseline模型的对比,其中NLR-I代表基于隐式反馈数据训练的模型,NLR-E代表基于显式反馈模型训练的模型,从下表数据看,NLR效果远好于各baseline模型,而NLR-E效果好于NLR-I。

再来看一下逻辑正则损失对于模型的提升效果,NLR-Emod代表没有加入逻辑正则损失训练得到的模型,可以看到,其效果是差于NLR-E的,因此逻辑正则损失对于模型效果的提升,具有正向的作用。

好了,论文还是比较有意思的,感兴趣的同学可以翻阅原文哟~


http://www.taodudu.cc/news/show-8123356.html

相关文章:

  • 初识DetNet:确定性网络的前世今生
  • 【智能制造】TSN联手OPC UA,将是阿里、腾讯、华为们直达工业4.0的特快通道?
  • docker 笔记整理
  • 作为前端必须知道的HTML知识
  • Docker实用篇-Docker的基本操作(各种命令、镜像和容器、数据卷挂载)、Dockerfile自定义镜像(基于现有镜像创建)、Docker-Compose(集群部署)、Docker镜像仓库(私)
  • Hexo搭建博客教程
  • 两个linux 共享文件夹,多学一点(二)——在 Linux 下挂载 Windows 共享目录、使用 scp 命令在两台 Linux 间传输数据...
  • Go并发编程基础
  • GoLang之标准库Context包
  • go-etcd
  • go语言中的context
  • 有趣的 Go HttpClient 超时机制
  • Go并发编程-Context包
  • go语言Context标准库
  • Go 的标准库 Context 理解
  • 【搞定Go语言】第3天7:Go标准库Context
  • 29. Go语言标准库之Context
  • Go并发编程学习总结
  • Context标准库
  • Golang 标准库context.Context
  • Go标准库Context包:单个请求多个goroutine 之间与请求域的数据、取消信号、截止时间等相关操作
  • 20-Go语言之context
  • Golang 标准库context的基本使用
  • MySQL 5.5 NDB集群查看日志
  • 程序员能考哪些证书?
  • 程序员可以考哪些证书
  • —— GPS测量原理及应用复习-2 ——
  • 搞清楚电场Ex,Ey,Ez,normE(电场模)场分布的影响,看懂了这些不需要看磁场就能明白基本上所有的场分布知识...
  • Cesium最新基础教程系列4—坐标转换(平面坐标系,笛卡尔空间直角坐标系,弧度,经纬度,屏幕坐标)
  • 【内网流量操控技术六】icmp隧道之icmpsh
  • 这篇关于推荐系统遇上深度学习(一零六)-神经网络与逻辑推理相结合的NLR框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/324710

    相关文章

    Java中Redisson 的原理深度解析

    《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

    Java HashMap的底层实现原理深度解析

    《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

    Java 虚拟线程的创建与使用深度解析

    《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

    Python函数作用域与闭包举例深度解析

    《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

    linux系统中java的cacerts的优先级详解

    《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

    macOS彻底卸载Python的超完整指南(推荐!)

    《macOS彻底卸载Python的超完整指南(推荐!)》随着python解释器的不断更新升级和项目开发需要,有时候会需要升级或者降级系统中的python的版本,系统中留存的Pytho版本如果没有卸载干... 目录MACOS 彻底卸载 python 的完整指南重要警告卸载前检查卸载方法(按安装方式)1. 卸载

    Java 缓存框架 Caffeine 应用场景解析

    《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

    Oracle数据库在windows系统上重启步骤

    《Oracle数据库在windows系统上重启步骤》有时候在服务中重启了oracle之后,数据库并不能正常访问,下面:本文主要介绍Oracle数据库在windows系统上重启的相关资料,文中通过代... oracle数据库在Windows上重启的方法我这里是使用oracle自带的sqlplus工具实现的方

    深度解析Python中递归下降解析器的原理与实现

    《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

    深度解析Java @Serial 注解及常见错误案例

    《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3