连续函数的卷积分的详细形象解释

2023-11-01 12:48

本文主要是介绍连续函数的卷积分的详细形象解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

著作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
作者:中微子
链接:https://www.zhihu.com/question/20500497/answer/45708002
来源:知乎

不要试图直接从公式上去思考“翻转”的意义,回到问题的起源,你就会豁然开朗了。

打个比方,往平静的水面里面扔石头。我们把水面的反应看作是一种冲击响应。水面在t=0时刻石头丢进去的时候会激起高度为h(0)的波纹,但水面不会立马归于平静,随着时间的流逝,波纹幅度会越来越小,在t=1时刻,幅度衰减为h(1), 在t=2时刻,幅度衰减为h(2)……直到一段时间后,水面重复归于平静。

从时间轴上来看,我们只在t=0时刻丢了一块石头,其它时刻并没有做任何事,但在t=1,2….时刻,水面是不平静的,这是因为过去(t=0时刻)的作用一直持续到了现在。

那么,问题来了:

如果我们在t=1时刻也丢入一块石子呢?此时t=0时刻的影响还没有消失(水面还没有恢复平静)新的石子又丢进来了,那么现在激起的波浪有多高呢?答案是当前激起的波浪与t=0时刻残余的影响的叠加。那么t=0时刻对t=1时刻的残余影响有多大呢?


为了便于说明,接下来我们作一下两个假设:


1. 水面对于“单位石块”的响应是固定的

2. 丢一个两倍于的“单位石块”的石块激起的波纹高度是丢一个石块的两倍(即系统满足线性叠加原理)

现在我们来计算每一时刻的波浪有多高:

  • t=0时刻:

y(0)=x(0)*h(0);

  • t=1时刻:

当前石块引起的影响x(1)*h(0);

t=0时刻石块x(0)引起的残余影响x(0)*h(1);

y(1)=x(1)*h(0)+ x(0)*h(1);

  • t=2时刻:

当前石块引起的影响x(2)*h(0);

t=0时刻石块x(0)引起的残余影响x(0)*h(2);

t=1时刻石块x(1)引起的残余影响x(1)*h(1);

y(2)=x(2)*h(0)+ x(1)*h(1)+x(0)*h(2);

……

  • t=N时刻:

当前石块引起的影响x(N)*h(0);

t=0时刻石块x(0)引起的残余影响x(0)*h(N);

t=1时刻石块x(1)引起的残余影响x(1)*h(N-1);

y(N)=x(N)*h(0)+ x(N-1)*h(1)+x(N-2)*h(2)+…+x(0)*h(N);

这就是离散卷积的公式了

理解了上面的问题,下面我们来看看“翻转”是怎么回事:

当我们每次要丢石子时,站在当前的时间点,系统的对我们的回应都是h(0),时间轴之后的(h(1),h(2).....)都是对未来的影响。而整体的回应要加上过去对于现在的残余影响。

现在我们来观察t=4这个时刻。

站在t=0时刻看他对于未来(t=4)时刻(从现在往后4秒)的影响,可见是x(0)*h(4)

站在t=1时刻看他对于未来(t=4)时刻的影响(从现在往后3秒),可见是x(1)*h(3)

站在t=2时刻看他对于未来(t=4)时刻的影响(从现在往后2秒),可见是x(2)*h(2)

站在t=3时刻看他对于未来(t=4)时刻的影响(从现在往后1秒),可见是x(3)*h(1)

所以所谓的翻转只是因为你站立的现在是过去的未来,而因为h(t)始终不变,故h(1)其实是前一秒的h(1),而前一秒的h(1)就是现在,所以从当前x(4)的角度往左看,你看到的是过去的作用。h(t)未翻转前,当从h(0)往右看,你看到的是现在对于未来的影响,当翻转h(t)之后,从h(0)往左看,你依次看到的越来越远的过去对现在的影响,而这个影响,与从x=4向左看的作用影响相对应(都是越来越远的过去),作用与作用的响应就对应起来了,这一切的本质,是因为你站立的时间观察点和方向在变。

好像有点绕,其实@林麦讲的蛮清楚的了,借用了他的图,题主自己体会一下

这篇关于连续函数的卷积分的详细形象解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/323082

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

如何为Yarn配置国内源的详细教程

《如何为Yarn配置国内源的详细教程》在使用Yarn进行项目开发时,由于网络原因,直接使用官方源可能会导致下载速度慢或连接失败,配置国内源可以显著提高包的下载速度和稳定性,本文将详细介绍如何为Yarn... 目录一、查询当前使用的镜像源二、设置国内源1. 设置为淘宝镜像源2. 设置为其他国内源三、还原为官方

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

如何在Mac上安装并配置JDK环境变量详细步骤

《如何在Mac上安装并配置JDK环境变量详细步骤》:本文主要介绍如何在Mac上安装并配置JDK环境变量详细步骤,包括下载JDK、安装JDK、配置环境变量、验证JDK配置以及可选地设置PowerSh... 目录步骤 1:下载JDK步骤 2:安装JDK步骤 3:配置环境变量1. 编辑~/.zshrc(对于zsh

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve