损失函数总结(十一):Huber Loss、SmoothL1Loss

2023-11-01 11:20

本文主要是介绍损失函数总结(十一):Huber Loss、SmoothL1Loss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

损失函数总结(十一):Huber Loss、SmoothL1Loss

  • 1 引言
  • 2 损失函数
    • 2.1 Huber Loss
    • 2.2 SmoothL1Loss
  • 3 总结

1 引言

在前面的文章中已经介绍了介绍了一系列损失函数 (L1LossMSELossBCELossCrossEntropyLossNLLLossCTCLossPoissonNLLLossGaussianNLLLossKLDivLossBCEWithLogitsLossMarginRankingLossHingeEmbeddingLossMultiMarginLossMultiLabelMarginLossSoftMarginLossMultiLabelSoftMarginLossTripletMarginLossTripletMarginWithDistanceLoss)。在这篇文章中,会接着上文提到的众多损失函数继续进行介绍,给大家带来更多不常见的损失函数的介绍。这里放一张损失函数的机理图:
在这里插入图片描述

2 损失函数

2.1 Huber Loss

MSE 损失收敛快但容易受 outlier 影响,MAE 对 outlier 更加健壮但是收敛慢Huber Loss 则是一种将 MSE 与 MAE 结合起来,取两者优点的损失函数,也被称作 Smooth Mean Absolute Error Loss 。其原理很简单,就是在误差接近 0 时使用 MSE,误差较大时使用 MAE。Huber Loss的数学表达式如下:
l ( x , y ) = L = { l 1 , . . . , l N } T l(x, y) = L = \{l_1, ..., l_N\}^T l(x,y)=L={l1,...,lN}T

其中,
l n = { 0.5 ( x n − y n ) 2 , i f ∣ x n − y n ∣ < d e l t a d e l t a ∗ ( ∣ x n − y n ∣ − 0.5 ∗ d e l t a ) , o t h e r w i s e l_n = \left\{\begin{matrix} 0.5(x_n-y_n)^2, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if \ |x_n-y_n|<delta \\ delta*(|x_n-y_n| - 0.5*delta), \ \ \ \ \ \ \ \ \ \ \ otherwise \end{matrix}\right. ln={0.5(xnyn)2,                         if xnyn<deltadelta(xnyn0.5delta),           otherwise

注意:当 d e l t a = 1 delta=1 delta=1 时,该损失函数等价于SmoothL1Loss。

代码实现(Pytorch):

import numpy as np
# 观测值
y = np.array([2.5, 3.7, 5.1, 4.2, 6.8])
# 模型预测值
f_x = np.array([2.2, 3.8, 4.9, 4.5, 7.2])
# 设置Huber损失的超参数
delta = 1.0
# 计算Huber损失
def huber_loss(y, f_x, delta):loss = np.where(np.abs(y - f_x) <= delta, 0.5 * (y - f_x) ** 2, delta * np.abs(y - f_x) - 0.5 * delta ** 2)
return loss
loss = huber_loss(y, f_x, delta)
print("Huber Loss for each data point:", loss)
print("Mean Huber Loss:", np.mean(loss))

由于存在一个需要迭代的超参数 d e l t a delta delta, 因此在深度学习领域还是MSE等简单损失函数占据独特优势。

2.2 SmoothL1Loss

论文链接:Fast R-CNN

SmoothL1Loss 是一种常用于回归任务的损失函数,是 L1Loss 的平滑版本。相比于L1Loss(MAELoss),SmoothL1Loss 可以收敛得更快;相比于L2Loss(MSELoss),SmoothL1Loss 对离群点、异常值不敏感,梯度变化相对更小,训练时不容易跑飞。SmoothL1Loss 的数学表达式如下:
l n = { 0.5 ( x n − y n ) 2 / b e t a , i f ∣ x n − y n ∣ < b e t a ∣ x n − y n ∣ − 0.5 ∗ b e t a , o t h e r w i s e l_n = \left\{\begin{matrix} 0.5(x_n-y_n)^2/beta, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if \ |x_n-y_n|<beta\\ |x_n-y_n| - 0.5*beta, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwise \end{matrix}\right. ln={0.5(xnyn)2/beta,                         if xnyn<betaxnyn0.5beta,                                    otherwise

  • beta:指定该损失在 L 1 ∼ L 2之间变化的阈值,默认为1.0。

代码实现(Pytorch):

import torch.nn as nn
import torchloss1 = nn.SmoothL1Loss(reduction='none')
loss2 = nn.SmoothL1Loss(reduction='mean')y = torch.randn(3)
y_pred = torch.randn(3)
loss_value1 = loss1(y, y_pred)
loss_value2 = loss2(y, y_pred)print(y)   # tensor([ 1.6938, -0.3617, -1.2738])
print(y_pred)   # tensor([ 0.3932,  0.8715, -0.2410])
print(loss_value1)   # tensor([0.8007, 0.7332, 0.5328])
print(loss_value2)   # tensor(0.6889)

超参数会限制损失函数的训练速度,整体而言可能还是 MSELoss 更好用。。。。

3 总结

到此,使用 损失函数总结(十一) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。如果存在没有提及的损失函数也可以在评论区提出,后续会对其进行添加!!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

这篇关于损失函数总结(十一):Huber Loss、SmoothL1Loss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322589

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(