损失函数总结(十一):Huber Loss、SmoothL1Loss

2023-11-01 11:20

本文主要是介绍损失函数总结(十一):Huber Loss、SmoothL1Loss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

损失函数总结(十一):Huber Loss、SmoothL1Loss

  • 1 引言
  • 2 损失函数
    • 2.1 Huber Loss
    • 2.2 SmoothL1Loss
  • 3 总结

1 引言

在前面的文章中已经介绍了介绍了一系列损失函数 (L1LossMSELossBCELossCrossEntropyLossNLLLossCTCLossPoissonNLLLossGaussianNLLLossKLDivLossBCEWithLogitsLossMarginRankingLossHingeEmbeddingLossMultiMarginLossMultiLabelMarginLossSoftMarginLossMultiLabelSoftMarginLossTripletMarginLossTripletMarginWithDistanceLoss)。在这篇文章中,会接着上文提到的众多损失函数继续进行介绍,给大家带来更多不常见的损失函数的介绍。这里放一张损失函数的机理图:
在这里插入图片描述

2 损失函数

2.1 Huber Loss

MSE 损失收敛快但容易受 outlier 影响,MAE 对 outlier 更加健壮但是收敛慢Huber Loss 则是一种将 MSE 与 MAE 结合起来,取两者优点的损失函数,也被称作 Smooth Mean Absolute Error Loss 。其原理很简单,就是在误差接近 0 时使用 MSE,误差较大时使用 MAE。Huber Loss的数学表达式如下:
l ( x , y ) = L = { l 1 , . . . , l N } T l(x, y) = L = \{l_1, ..., l_N\}^T l(x,y)=L={l1,...,lN}T

其中,
l n = { 0.5 ( x n − y n ) 2 , i f ∣ x n − y n ∣ < d e l t a d e l t a ∗ ( ∣ x n − y n ∣ − 0.5 ∗ d e l t a ) , o t h e r w i s e l_n = \left\{\begin{matrix} 0.5(x_n-y_n)^2, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if \ |x_n-y_n|<delta \\ delta*(|x_n-y_n| - 0.5*delta), \ \ \ \ \ \ \ \ \ \ \ otherwise \end{matrix}\right. ln={0.5(xnyn)2,                         if xnyn<deltadelta(xnyn0.5delta),           otherwise

注意:当 d e l t a = 1 delta=1 delta=1 时,该损失函数等价于SmoothL1Loss。

代码实现(Pytorch):

import numpy as np
# 观测值
y = np.array([2.5, 3.7, 5.1, 4.2, 6.8])
# 模型预测值
f_x = np.array([2.2, 3.8, 4.9, 4.5, 7.2])
# 设置Huber损失的超参数
delta = 1.0
# 计算Huber损失
def huber_loss(y, f_x, delta):loss = np.where(np.abs(y - f_x) <= delta, 0.5 * (y - f_x) ** 2, delta * np.abs(y - f_x) - 0.5 * delta ** 2)
return loss
loss = huber_loss(y, f_x, delta)
print("Huber Loss for each data point:", loss)
print("Mean Huber Loss:", np.mean(loss))

由于存在一个需要迭代的超参数 d e l t a delta delta, 因此在深度学习领域还是MSE等简单损失函数占据独特优势。

2.2 SmoothL1Loss

论文链接:Fast R-CNN

SmoothL1Loss 是一种常用于回归任务的损失函数,是 L1Loss 的平滑版本。相比于L1Loss(MAELoss),SmoothL1Loss 可以收敛得更快;相比于L2Loss(MSELoss),SmoothL1Loss 对离群点、异常值不敏感,梯度变化相对更小,训练时不容易跑飞。SmoothL1Loss 的数学表达式如下:
l n = { 0.5 ( x n − y n ) 2 / b e t a , i f ∣ x n − y n ∣ < b e t a ∣ x n − y n ∣ − 0.5 ∗ b e t a , o t h e r w i s e l_n = \left\{\begin{matrix} 0.5(x_n-y_n)^2/beta, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if \ |x_n-y_n|<beta\\ |x_n-y_n| - 0.5*beta, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ otherwise \end{matrix}\right. ln={0.5(xnyn)2/beta,                         if xnyn<betaxnyn0.5beta,                                    otherwise

  • beta:指定该损失在 L 1 ∼ L 2之间变化的阈值,默认为1.0。

代码实现(Pytorch):

import torch.nn as nn
import torchloss1 = nn.SmoothL1Loss(reduction='none')
loss2 = nn.SmoothL1Loss(reduction='mean')y = torch.randn(3)
y_pred = torch.randn(3)
loss_value1 = loss1(y, y_pred)
loss_value2 = loss2(y, y_pred)print(y)   # tensor([ 1.6938, -0.3617, -1.2738])
print(y_pred)   # tensor([ 0.3932,  0.8715, -0.2410])
print(loss_value1)   # tensor([0.8007, 0.7332, 0.5328])
print(loss_value2)   # tensor(0.6889)

超参数会限制损失函数的训练速度,整体而言可能还是 MSELoss 更好用。。。。

3 总结

到此,使用 损失函数总结(十一) 已经介绍完毕了!!! 如果有什么疑问欢迎在评论区提出,对于共性问题可能会后续添加到文章介绍中。如果存在没有提及的损失函数也可以在评论区提出,后续会对其进行添加!!!!

如果觉得这篇文章对你有用,记得点赞、收藏并分享给你的小伙伴们哦😄。

这篇关于损失函数总结(十一):Huber Loss、SmoothL1Loss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/322589

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Spring 依赖注入与循环依赖总结

《Spring依赖注入与循环依赖总结》这篇文章给大家介绍Spring依赖注入与循环依赖总结篇,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Spring 三级缓存解决循环依赖1. 创建UserService原始对象2. 将原始对象包装成工

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda