部署并应用ByteTrack实现目标跟踪

2023-10-05 02:30

本文主要是介绍部署并应用ByteTrack实现目标跟踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

尽管YOLOv8已经集成了ByteTrack算法,但在这里我还是想利用ByteTrack官网的代码,自己实现目标跟踪。

要想应用ByteTrack算法,首先就要从ByteTrack官网上下载并安装。虽然官网上介绍得很简单,只需要区区6行代码,但对于国内用户来说,要想安装ByteTrack,只要这些代码是万万不会成功的。我按照复现经典目标跟踪算法ByteTrack之路:调通第一个demo这个网站介绍的安装过程成功地实现了ByteTrack的部署。该博文介绍得很详细,我在这里就不再赘述了。下面我详细介绍如何应用ByteTrack。

我们首先给出ByteTrack的核心关键代码。

导入ByteTrack:

import sys
sys.path.append(f"D:/ByteTrack")
from yolox.tracker.byte_tracker import BYTETracker

D:\ByteTrack为下载ByteTrack时,其所在的目录。

下面设置ByteTrack的参数:

class BYTETrackerArgs:track_thresh: float = 0.25track_buffer: int = 30match_thresh: float = 0.8aspect_ratio_thresh: float = 3.0min_box_area: float = 1.0mot20: bool = False

track_thresh表示跟踪置信阈值。简单地说,该值越大,被赋予目标跟踪ID的数量越少,也就意味着系统会把不太确定的轨迹抛弃掉。默认值为0.5。

track_buffer用于保留丢失轨迹的帧数。对于没有出现的ID,最多保留该值的帧数。默认值为30。

match_thresh表示跟踪匹配阈值。该值越大,目标与轨迹越容易匹配上。默认值为0.8。

aspect_ratio_thresh表示目标边框长宽之比的阈值。目标长宽之比大于该值时会把该目标滤除掉,这是因为长宽比过大时,显然它不会是任何物体。默认值为1.6。

min_box_area表示目标边框的面积阈值。目标面积小于该值时会把该目标滤除掉。默认值为10。

mot20表示是否使用mot20数据集进行测试。默认值为False。

实例化ByteTrack,并带入参数:

byte_tracker = BYTETracker(BYTETrackerArgs(), frame_rate=fps)

frame_rate表示视频每秒传输的帧数。默认值为30。

得到目标ID:

tracks = byte_tracker.update(outputs, img_info=frame.shape, img_size=frame.shape)

outputs表示目标检测器的输出,ByteTrack需要先进行目标检测,然后才能利用ByteTrack算法实现跟踪,outputs应为二维数组,第一维表示目标,第二维表示该目标的信息,其前四个元素为目标边框的左上角和右下角的坐标,第5个元素为该目标的得分值,一般我们可以为该值赋予目标的置信值。

img_info表示输入视频图像的尺寸。

img_size表示输出图像的尺寸,如果不对视频图像的尺寸进行改变的话,就让该值等于img_info。

输出tracks即为目标跟踪的结果,我们先用print(tracks)看看它的输出:

[OT_2_(1-28), OT_3_(1-28), OT_4_(1-28), OT_7_(26-28)]

从中可以看出,我们共得到了4个目标跟踪结果,它们的ID分别为2、3、4和7,其中ID为2的目标在第1帧开始出现,28为当前帧数,即在第28帧时,我们使用了print(tracks)这个代码。

我们再看看tracks的几个重要属性:

print(tracks[0].tlbr)
print(tracks[0].tlwh)
print(tracks[0].track_id)
print(tracks[0].score)

输出为:

[     820.39      184.35      852.77       204.6]
[     820.39      184.35      32.382      20.246]
2
0.7806676

tlbr表示该目标边框的左上角和右下角坐标;tlwh表示该目标边框的左上角坐标和它的长宽;track_id表示该目标的ID;score表示该目标的得分值。

有了目标ID,我们就可以为视频添加各类信息,如为目标添加ID和类别,以及绘制目标边框。我们可以直接利用tracks完成上述操作,但这里会有几个问题:第一由tracks得到的目标边框没有由outputs得到的目标边框准确;第二tracks没有目标类别信息。因此在这里我们还是利用outputs为目标添加各类信息,它要解决的问题是目标的ID是什么。

我们只需比较outputs和tracks的目标尺寸,完成匹配成对,就可以为outputs中的目标赋予ID。我们利用IOU算法来实现尺寸比较,为此我们编写下面函数:

def iou(box: np.ndarray, boxes: np.ndarray):# 计算交集xy_max = np.minimum(boxes[:, 2:], box[2:])xy_min = np.maximum(boxes[:, :2], box[:2])inter = np.clip(xy_max-xy_min, a_min=0, a_max=np.inf)inter = inter[:, 0]*inter[:, 1]# 计算面积area_boxes = (boxes[:, 2]-boxes[:, 0])*(boxes[:, 3]-boxes[:, 1])area_box = (box[2]-box[0])*(box[3]-box[1])return inter/(area_box+area_boxes-inter)

对于这个函数我们不做过多解释,它实现一对多的计算。下面给出它的应用:

for track in tracks:box_iou = iou(track.tlbr, outputs[:,:4])maxindex  = np.argmax(box_iou)newoutput = np.append(outputs[maxindex], track.track_id)print(newoutput)

输出为:

[820.86      184.48      852.67      204.75     0.78067    2    2]
[766.21      212.08      808.44       246.9     0.73741    2    3]
[479.06       178.3      517.84      217.07     0.68729    2    4]
[508.42      147.98      529.87      165.88     0.62819    2    7]

每行的最后一个元素就是它的ID。

ByteTrack严重依赖于目标检测器的准确性。ByteTrack利用每个目标的得分值来计算目标跟踪,并赋予ID。我们一般都是把目标检测得到的置信值作为这个得分值传递给ByteTrack,作为其计算的依据。因此当置信值偏低,并且track_thresh偏高时,会出现tracks得到的目标少于outputs的目标,也就出现了有一些目标没有被赋予ID。

为了减少这类问题出现,我们可以人为的为目标置信值赋予更高的值(充分信任目标检测器),然后再传给ByteTrack,即

for output in outputs:output[4] = 0.95

应用ByteTrack进行目标跟踪的关键部分我们都解释清楚了,下面就给出完整的代码,在这里,我们仍然选择YOLOv8作为目标检测器,除了YOLO易于实现外,另一个原因是它的输出与ByteTrack所要求的数据输入的格式完全相同:

import numpy as np
import cv2
from ultralytics import YOLO
import sys
sys.path.append(f"D:/ByteTrack")
from yolox.tracker.byte_tracker import BYTETrackerclass BYTETrackerArgs:track_thresh: float = 0.25   track_buffer: int = 30   match_thresh: float = 0.8   aspect_ratio_thresh: float = 3.0min_box_area: float = 1.0mot20: bool = False   model = YOLO('yolov8l.pt')cap = cv2.VideoCapture("D:/track/Highway Traffic.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
fNUMS = cap.get(cv2.CAP_PROP_FRAME_COUNT)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
videoWriter = cv2.VideoWriter("D:/track/mytrack.mp4", fourcc, fps, size)byte_tracker = BYTETracker(BYTETrackerArgs(),frame_rate= fps)def box_label(image, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))cv2.rectangle(image, p1, p2, color, thickness=1, lineType=cv2.LINE_AA)if label:w, h = cv2.getTextSize(label, 0, fontScale=2 / 3, thickness=1)[0]  outside = p1[1] - h >= 3p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3cv2.rectangle(image, p1, p2, color, -1, cv2.LINE_AA)cv2.putText(image,label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),0, 2/3, txt_color, thickness=1, lineType=cv2.LINE_AA)def iou(box: np.ndarray, boxes: np.ndarray):xy_max = np.minimum(boxes[:, 2:], box[2:])xy_min = np.maximum(boxes[:, :2], box[:2])inter = np.clip(xy_max-xy_min, a_min=0, a_max=np.inf)inter = inter[:, 0]*inter[:, 1]area_boxes = (boxes[:, 2]-boxes[:, 0])*(boxes[:, 3]-boxes[:, 1])area_box = (box[2]-box[0])*(box[3]-box[1])return inter/(area_box+area_boxes-inter)while cap.isOpened():success, frame = cap.read()if success:        results = model(frame,conf=0.5)outputs = results[0].boxes.data.cpu().numpy()if outputs is not None:for output in outputs:output[4] = 0.95tracks = byte_tracker.update(outputs[:,:5], img_info=frame.shape, img_size=frame.shape)for track in tracks:box_iou = iou(track.tlbr, outputs[:,:4])maxindex  = np.argmax(box_iou)if outputs[maxindex, 5] == 2:box_label(frame, outputs[maxindex], '#'+str(track.track_id)+' car' , (167, 146, 11))elif outputs[maxindex, 5] == 5:box_label(frame, outputs[maxindex], '#'+str(track.track_id)+' bus', (186, 55, 2))elif outputs[maxindex, 5] == 7:box_label(frame, outputs[maxindex], '#'+str(track.track_id)+' truck', (19, 222, 24))cv2.putText(frame, "https://blog.csdn.net/zhaocj", (25, 50),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)cv2.imshow("ByteTrack", frame)videoWriter.write(frame)if cv2.waitKey(1) & 0xFF == ord("q"):breakelse:breakcap.release()
videoWriter.release()
cv2.destroyAllWindows()

结果为:

ByteTrack

我们也可以再看一个示例:

people

这篇关于部署并应用ByteTrack实现目标跟踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/3201

相关文章

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do