VIT中PatchEmbed、MultiHeadAttention代码详解(PyTorch)

2023-11-01 01:30

本文主要是介绍VIT中PatchEmbed、MultiHeadAttention代码详解(PyTorch),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文对PatchEmbed和MulitHeadAttention进行代码的详细解读,希望可以给同样被此处困扰的小伙伴提供一些帮助,如有错误,还望指正。

文章目录

  • 一、VIT简单介绍
  • 二、PatchEmbed
      • 1.PatchEmbed的目的
      • 2.代码的执行过程
      • 3.注意
      • 4.完整代码解释
      • 5.代码简化版
  • 三、Attention机制
      • 1.self-attention和MultiHeadAttention的区别
      • 2.部分代码解释
      • 3.实现思想
      • 4.完整代码解释

一、VIT简单介绍

相信看到本文的小伙伴基本都是了解了VIT为何物,否则也不会对PatchEmbed感兴趣,所以本文只对VIT做一个简单的介绍。
VIT是Vision Transformer的简称,是将Transformer模型运用在图片上的一个重要的网络模型,也是Transformer四大核心模块之一。
其思想就是将图片分块再拼接形成如同文本数据一般的序列数据,方便将数据输入到Transformer网络中。如图为VIT的网络模型结构,本文不会讨论其所有的子模块,而是选择器PatchEmbed模块和MultiHeadAttention模块进行代码的详解。
在这里插入图片描述

二、PatchEmbed

1.PatchEmbed的目的

将输入的图片用分块再拼接的思想转化为序列的形式,因为Transformer只能接收序列数据。注意这里只是用了分块再拼接的思想,看代码的时候,不需要这个思想也是可以看懂的,如果理解不了,就直接看代码就可以了。或者说看懂了代码之后就理解这个思想了。

2.代码的执行过程

1.输入的图片size为[B, 3, 224, 224]
2.确定好分块的大小为patch_size=16,确定好16,就可以确定卷积核的大小为16,步长为16,即patch_size = kernel_size = stride
3.首先图片通过卷积nn.Conv2d(3, 768,(16,16), (16,16))后size变为[B, 768, 14, 14]
4.再经历一次flatten(2),变为[B, 768, 14*14=196],这里flatten(2)的2意思是在位序为2开始进行展平
5.最后经过一次转置transpose(1, 2),size变成[B, 196, 768]

3.注意

许多人还是不理解为什么要将图片的size转成[B, 196, 768],因为Transformer接受的是序列格式的数据,而不是图片4维【B,C,H,W】的格式,序列如文本数据的格式为【B,N,C】,N为token的个数,C为每个token的维度。只有将图片通过分块拼接成序列形式,才可以输入到transformer网络中。

4.完整代码解释

class PatchEmbed(nn.Module):def __init__(self, img_size=224,  # 输入图片大小patch_size=16,  # 分块大小in_c=3,  # 输入图片的通道数embed_dim=768,  # 经过PatchEmbed后的分块的通道数norm_layer=None): # 标准化层super(PatchEmbed, self).__init__()img_size = (img_size, img_size)  #将img_size、patch_size转为元组patch_size = (patch_size, patch_size)self.img_size = img_sizeself.patch_size = patch_size# // 是一种特殊除号,作用为向下取整# grid_size:分块后的网格大小,即一张图片切分为块后形成的网格结构,理解不了不用理解,就是为了求出分块数目的self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])self.num_patches = self.grid_size[0] * self.grid_size[1]  # 分块数量self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)  # 分块用的卷积# 如果norm_layer为None,就使用一个空占位层,就是看要不要进行一个标准化self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()# nn.Identity()层是用来占位的,没什么用def forward(self, x):B, C, H, W = x.shape# assert是python的断言,当后面跟的是False时就会停下assert H == self.img_size[0] and W == self.img_size[1], \f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})""""x = self.proj(x).flatten(2).transpose(1, 2)1.第一步将x做卷积 [B, 3, 224, 224] -> [B, 768, 14, 14]2.从位序为2的维度开始将x展平 [B, 768, 14, 14] -> [B, 768, 196]3.转置[B, 196, 768] 得到batch批次,每个批次有196个“词”,每个“词”有768维"""x = self.proj(x).flatten(2).transpose(1, 2)x = self.norm(x)return x

5.代码简化版

上述代码可以简化为如下代码,不同之处在于使用了Rearrange函数
Rearrange函数可以很方便的操作张量的shape,直接替代了view和reshape方法
Rearrange函数的简单使用如下:

from einops import rearrangeimg = torch.randn(1, 3, 224, 224)
print(img.shape)
patch = rearrange(img, 'b c (h s1) (w s2) -> b (h w) (s1 s2 c)', s1=16, s2=16)
"""
解释:
img [1, 3, 224, 224]
【b c (h s1) (w s2)】其中s1=s2=16,故可知h=w=224/16=14
故【b (h w) (s1 s2 c)】=[b 196 768]
"""
print(patch.shape)

简化版的PatchEmbed如下:

class PatchEmbed(nn.Module):def __init__(self, patch_size=16, in_channel=3, emb_size=768):super(PatchEmbed, self).__init__()self.patch_embed_linear = nn.Sequential(# 将原始图片切分为16*16并将其拉平Rearrange('b c (h s1) (w s2) -> b (h w) (s1 s2 c)', s1=patch_size, s2=patch_size),nn.Linear(patch_size * patch_size * in_channel, emb_size))def forward(self, x):x = self.patch_embed_linear(x)return x

除此之外,使用卷积操作也是可以的:

class PatchEmbedding(nn.Module):def __init__(self, in_channel=3, embed_dim=768, patch_size=16):super(PatchEmbedding, self).__init__()self.patch_embed_conv = nn.Sequential(# [b, 3, 224, 224]nn.Conv2d(in_channel, embed_dim, kernel_size=patch_size, stride=patch_size),# [b, 768, 14, 14]Rearrange('b c h w -> b (h w) c')# [b, 196, 768])def forward(self, x):x = self.patch_embed_conv(x)return x

三、Attention机制

1.self-attention和MultiHeadAttention的区别

自注意力机制和多头注意力机制原理上几乎差不多,而二者的不同之处在于自注意机制是用一组QKV来使token获取上下文信息。
而由下图可知,多头注意力机制是使用多组QKV来让token得到多组的上下文信息,最后使用一个W0矩阵对得到的所有Zi进行整合。
在这里插入图片描述

2.部分代码解释

在下面的完整代码中,有如下一行代码,刚好找到了图解,所以单独拿出来,以便于理解。

self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)

上面的代码可以用下图来理解,通过一次的全连接操作,就可以生成x的QKV矩阵
在这里插入图片描述
通过上图的解释,不难得出,该行代码可以用如下三行代码来替换:

self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)

对于代码中的参数qk_scale,记住这是公式中的根号dk就可以了。在这里插入图片描述

3.实现思想

代码在实现多头注意力机制的时候,使用了一次计算多组的方法,即多头所用的qkv,一次性生成,各组间的计算也是一次性通过矩阵计算的方式并行计算完成。

# 一次性生成
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# 一次性计算
attn = (q @ k.transpose(-2, -1)) * self.scale  # 计算相似度
x = (attn @ v).transpose(1, 2).reshape(B, N, C)  # 计算注意力值

在这两行代码中,q、k、v代表的就是多组的qkv矩阵,通过一个矩阵计算的算式即可将每一组的qkv都计算出来。

4.完整代码解释

class Attention(nn.Module):# 在实现上多头注意实际上就是在单头的基础上增添num_heads个维度,且在最后输出attention时增加一个权重矩阵def __init__(self,dim,  # 输入token的dim 768num_heads=8,qkv_bias=False,  # 在生成qkv时是否使用偏置qk_scale=None,  # q、k的缩放因子,保证内积计算不会受到向量长度的影响attn_drop_ratio=0,proj_drop_ratio=0):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // self.num_heads  # 计算每一个head需要传入的dim  768/8=96self.scale = qk_scale or head_dim ** -0.5  # 若给定qk_scale则使用其作为缩放因子,若没给则使用后者self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)"""self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)目的:得到对应x的q、k、v矩阵,其中x是token_num个dim维的token组成的矩阵过程:x:[token_num, dim] 经过Linear层后得到矩阵 qkv[token_num, dim * 3]将qkv矩阵按dim进行拆分,就可以得到size为[token_num, dim]的q、k、v三个矩阵故该线性层可以拆分为:self.q = nn.Linear(dim, dim)self.k = nn.Linear(dim, dim)self.v = nn.Linear(dim, dim)新的理解:经过一个线性层,就是让输入矩阵乘一个[in_channel, out_channel]的矩阵如:x[token_num, dim] 经过 Linear(dim, dim*3) 就是乘一个[dim, dim*3]的矩阵,最后变成[token_num, dim*3]"""self.attn_drop = nn.Dropout(attn_drop_ratio)self.proj = nn.Linear(dim, dim)  # 将每一个head的结果拼接的时候所乘的权重self.proj_drop = nn.Dropout(proj_drop_ratio)def forward(self, x): # x是经历了PatchEmbed后的xB, N, C = x.shape # 【B,N,C】:【B, 196, 768】 qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)"""输入x:[batch, N, C]1.self.qkv(x) : qkv:[B, N, 3*C]2.reshape() : qkv:[B, N, 3, self.num_heads, C // self.num_heads]3.permute(2, 0, 3, 1, 4) : qkv:[3, B, self.num_heads, N, C // self.num_heads]size说明:3:将qkv分为q、k、v三个矩阵 | q:[B, self.num_heads, N, C(dim)]B: 每个q/k/v矩阵都对应有B个batch | 单个q : [self.num_heads, N, C(dim)]self.num_heads : 在根据头数,将q/k/v划分为对应头数个矩阵 | 每个头:[N, C(dim)]:  反正就是将qkv划分为和输入x一致大小的矩阵"""q, k, v = qkv[0], qkv[1], qkv[2]  # 【B,8,N,96】:【batch,8个头,N个词,每个词96维】attn = (q @ k.transpose(-2, -1)) * self.scale  # 计算相似度"""q、k、v都是【B, 8, N, 96】的矩阵,就是多头注意力机制的多个qkv然后利用attn = (q @ k.transpose(-2, -1)) * self.scale公式让这多组q@k一次性计算出来x = (attn @ v).transpose(1, 2).reshape(B, N, C)也是一样的,通过一个公式将多组的	 softmax(q@k)@v计算出来"""attn = attn.softmax(dim=-1)  # 计算概率attn = self.attn_drop(attn)x = (attn @ v).transpose(1, 2).reshape(B, N, C)  # 计算注意力值x = self.proj(x)  # 乘最后的权重矩阵x = self.proj_drop(x)return x

这篇关于VIT中PatchEmbed、MultiHeadAttention代码详解(PyTorch)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319525

相关文章

Java Lambda表达式的使用详解

《JavaLambda表达式的使用详解》:本文主要介绍JavaLambda表达式的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言二、Lambda表达式概述1. 什么是Lambda表达式?三、Lambda表达式的语法规则1. 无参数的Lambda表

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

Spring @RequestMapping 注解及使用技巧详解

《Spring@RequestMapping注解及使用技巧详解》@RequestMapping是SpringMVC中定义请求映射规则的核心注解,用于将HTTP请求映射到Controller处理方法... 目录一、核心作用二、关键参数说明三、快捷组合注解四、动态路径参数(@PathVariable)五、匹配请

git stash命令基本用法详解

《gitstash命令基本用法详解》gitstash是Git中一个非常有用的命令,它可以临时保存当前工作区的修改,让你可以切换到其他分支或者处理其他任务,而不需要提交这些还未完成的修改,这篇文章主要... 目录一、基本用法1. 保存当前修改(包括暂存区和工作区的内容)2. 查看保存了哪些 stash3. 恢

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

java String.join()方法实例详解

《javaString.join()方法实例详解》String.join()是Java提供的一个实用方法,用于将多个字符串按照指定的分隔符连接成一个字符串,这一方法是Java8中引入的,极大地简化了... 目录bVARxMJava String.join() 方法详解1. 方法定义2. 基本用法2.1 拼接

Java中的record使用详解

《Java中的record使用详解》record是Java14引入的一种新语法(在Java16中成为正式功能),用于定义不可变的数据类,这篇文章给大家介绍Java中的record相关知识,感兴趣的朋友... 目录1. 什么是 record?2. 基本语法3. record 的核心特性4. 使用场景5. 自定

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=