基于神经网络的宏观经济数据分析研究(Matlab代码实现)

本文主要是介绍基于神经网络的宏观经济数据分析研究(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

宏观经济时间序列的分析和预测是国家决策者非常感兴趣的因素。然而,由于缺乏精确的经济模型和外部因素(如天气变化或政治决策)的影响,经济分析和预测不是简单的任务。我们的研究重点是西班牙语国家。在本论文中,我们研究了不同类型的神经网络及其在各种分析任务中的适用性,包括GDP预测以及评估各国发展的主要趋势。研究的模型包括多层神经网络、递归神经网络和Kohonen映射。分析了1980-2015年期间17个西班牙语国家以及法国和德国的历史宏观经济数据。这项工作随后比较了用于训练神经网络的各种算法的性能,并展示了各国经济状况的变化。此外,我们还提供了解释数据中发现的趋势的可能原因。

📚2 运行结果

 

 

 

部分代码:

%% Generating data points
x = linspace(-2*pi, 2*pi, 500);
y = sin(x);
xextended = linspace(-4*pi,4*pi,1000);
yextended = sin(xextended);

%% Create and configure the MLP
layer = [50 10];
% gradient descend (backpropagation) algorithm will be used
net = feedforwardnet(layer,'traingd');
net = configure(net,x,y);
net = init(net);
        
for h = 1:length(layer)
    %Using sigmoid transfer function
    net.layers{h}.transferFcn = 'tansig'; 
end

net.trainParam.max_fail = 150;
net.trainParam.time = 600;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-6;
net.trainParam.lr = 0.01;
%% Train the MLP
[net,tr] = train(net,x,y);
%% Generate the output of the MLP
outputs = net(x);
outputsextended = net(xextended);
%% Create and configure the RNN
% The RNN will use an input sequence of length 100
% gradient descend (backpropagation) algorithm will be used
rnn = layrecnet(1:100,[15],'traingd');
rnn.trainParam.epochs = 2000;
rnn.trainParam.lr = 0.01;
%% Transforming the training data to fit the RNN
[Xs,Xi,Ai,Ts] = preparets(rnn,num2cell(x),num2cell(y));
%% Training the RNN
rnn = train(rnn,Xs,Ts,Xi,Ai);
%% Transforming the testing data to fit the RNN
[Xs2,Xi2,Ai2,Ts2] = preparets(rnn,num2cell(xextended),num2cell(yextended));
%% Generate the output of the RNN
rnnoutput = rnn(Xs2,Xi2,Ai2);
%% Transform the output of the RNN
rnnoutput = cell2mat(rnnoutput);

%% Generate the plot for the MLP
figure 
plot(xextended(101:(length(xextended))),yextended(101:(length(yextended))),'Color',[1 0 0], 'LineWidth',2)
hold on
plot(xextended(101:(length(xextended))),outputsextended(101:length(outputsextended)),'Color', [0 1 0], 'LineWidth',2);
line([-2*pi -2*pi], [-2 2], 'Color', [0 0 0]);
line([2*pi 2*pi], [-2 2], 'Color', [0 0 0]);
xlabel('-4\pi < x < 4\pi'); % x-axis label
ylabel('sine function approximation');
legend('y = sin(x)', 'MLP approximation');

%% Generate the plot for the RNN
figure 
plot(xextended(101:(length(xextended))),yextended(101:(length(yextended))),'Color',[1 0 0], 'LineWidth',2)
hold on
plot(xextended(101:(length(xextended))),rnnoutput, 'Color', [0 0 1], 'LineWidth',2)
line([-2*pi -2*pi], [-2 2], 'Color', [0 0 0]);
line([2*pi 2*pi], [-2 2], 'Color', [0 0 0]);
xlabel('-4\pi < x < 4\pi'); % x-axis label
ylabel('sine function approximation');
legend('y = sin(x)', 'RNN approxi

 

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]刘涛雄,徐晓飞.大数据与宏观经济分析研究综述[J].国外理论动态,2015(01):57-64.

这篇关于基于神经网络的宏观经济数据分析研究(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319495

相关文章

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布