geopandas学习(五)分层设色

2023-10-31 22:59
文章标签 学习 分层 geopandas 设色

本文主要是介绍geopandas学习(五)分层设色,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

geopandas学习(五)分层设色

文章参考:参考

地区分布图(Choropleth maps,又叫面量图)作为可能是最常见的一种地理可视化方法。

其核心是对某个与矢量面关联的数值序列进行有意义的分层,并为这些分层选择合适美观的色彩,最后完成对地图的着色。

优点是美观且直观,即使对地理信息一窍不通的人,也能通过颜色区分出不同面之间的同质性与异质性:

但同样地,如果对数据分层采取的方法有失严谨没有很好的遵循数据特点,会很容易让看到图的人产生出不正确的判断。

下面我们按照先分层,后设色的顺序进行介绍。

1.1 基于mapclassify的数据分层

上一篇文章中我们提到过,,在geopandas.GeoDataFrame.plot()中,参数scheme对应的数据分层是基于第三方库mapclassify实现的。

import pandas as pd
import matplotlib.pyplot as plt
import geopandas as gpd
import warningswarnings.filterwarnings('ignore')%matplotlib inline
plt.rcParams["font.family"] = "SimHei" # 设置全局中文字体为黑体# 读入中国矢量数据
china = gpd.read_file('zip://china-shapefiles.zip!china-shapefiles',layer='china',encoding='utf-8')# 由于每行数据是单独的面,因此按照其省份列OWNER融合
china = china.dissolve(by='OWNER').reset_index(drop=False)# 读入南海九段线数据
nine_lines = gpd.read_file('zip://china-shapefiles.zip!china-shapefiles',layer='china_nine_dotted_line',encoding='utf-8')# 读入2020-03-08更新的新冠肺炎原始数据
raw = pd.read_csv('DXYArea.csv', parse_dates=['updateTime'])# 定义CRS
albers_proj = '+proj=aea +lat_1=25 +lat_2=47 +lon_0=105'# 抽取updateTime列中的年、月、日信息分别保存到新列中
raw['year'], raw['month'], raw['day'] = list(zip(*raw['updateTime'].apply(lambda d: (d.year, d.month, d.day))))# 得到每个省份最新的指标数据
temp = raw.sort_values(['provinceName', 'updateTime'], ascending=False, ignore_index=True).groupby('provinceName') \.first() \.reset_index(drop=False) \.loc[:, ['provinceName', 'provinceEnglishName','province_confirmedCount','province_suspectedCount','province_curedCount','province_deadCount']]# 查看前5行
temp.head()

因此要想对geopandas中的数据分层有深入的了解,我们就得先来了解一下mapclassify中的各种数据分层算法。

1.1.1 BoxPlot

在mapclassify中我们使用BoxPlot()来为数据实现箱线图分层:

import mapclassify as mc# 对各省2020-03-04对应的累计确诊数量进行分层
bp = mc.BoxPlot(temp['province_confirmedCount'])
# 查看数据分层结果
bp

在这里插入图片描述
可以看出通过箱线图法将数据分成了五类,其中异常值只有1个即为湖北省。

下面我们配合geopandas来对上述结果进行可视化,和上一篇文章一样,按照省级单位名称连接我们的疫情数据与矢量数据:

data_with_geometry = pd.merge(left=temp.replace('澳门', '澳门特别行政区'),right=china,left_on='provinceName',right_on='OWNER',how='right').loc[:, ['provinceName','provinceEnglishName','province_confirmedCount','province_suspectedCount','province_curedCount','province_deadCount','geometry']]
# 将数据从DataFrame转换为GeoDataFrame
data_with_geometry = gpd.GeoDataFrame(data_with_geometry, crs='EPSG:4326')
data_with_geometry.head()

接着对其进行可视化,在上一篇文章图28的基础上,将scheme参数改为BoxPlot,又因为箱线图可以看作无监督问题,故分层数量k在这里无效,删去:

fig, ax = plt.subplots(figsize=(10, 10))ax = data_with_geometry.to_crs(albers_proj).plot(ax=ax,column='province_confirmedCount',cmap='Reds',missing_kwds={"color": "lightgrey","edgecolor": "black","hatch": "","label": "缺失值"},legend=True,scheme='BoxPlot',legend_kwds={'loc': 'lower left','title': '确诊数量分级','shadow': True})ax = nine_lines.geometry.to_crs(albers_proj).plot(ax=ax,edgecolor='grey',linewidth=3,alpha=0.4)ax.axis('off')
plt.suptitle('新型冠状肺炎累计确诊数量地区分布', fontsize=24) # 添加最高级别标题
plt.tight_layout(pad=4.5) # 调整不同标题之间间距
ax.text(-2800000, 1300000, '* 原始数据来源&

这篇关于geopandas学习(五)分层设色的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/318710

相关文章

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]