NASNet论文详解

2023-10-31 20:38
文章标签 详解 论文 nasnet

本文主要是介绍NASNet论文详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NASNet,论文的全名叫做Learning Transferable Architectures for Scalable Image Recognition.

这一篇论文是对神经网络架构搜索开篇之作NAS的集成和发展,也是由谷歌的Zoph等人提出来的,针对NAS论文中的缺点进行改进,在分类精度和训练资源、时间上,都优于前者。

NASNet论文的基本设计思想是:

  1. 和NAS论文一样,采用controller RNN来预测子网络参数
  2. 第一次提出了Cell和Block的概念
  3. controller RNN不再用来预测每一层的网络参数,而是用来预测Cell里面的Block参数

首先介绍一下什么是Cell和Block。Cell可以看做是整体网络架构里面的一个单元块,类似ResNet架构的残差块或者MobileNet V2的bottleneck,整个网络就是由这些单元块堆叠连接而成。

Cell分两种:Normal和Reduction。当输入特征和输出特征的分辨率是一致时,采用Normal Cell,当输入特征的分辨率是输入特征的一半时,采用Reduction Cell。Reduction Cell的设计方法Normal Cell基本一样,只是在输入特征上添加了一个stride=2的卷积操作,降低分辨率。在整体网络架构中,Normal Cell和Reduction Cell的设计原则是每N个Normal Cell中插入一个Reduction Cell,如下图所示。
在这里插入图片描述
图1. Cifar-10和ImageNet上的NASNet网络架构

Block是Cell里面的基本单元,共有B个(论文取5)。每个Block有两个输入,分别经过各自的operation之后再结合(相加或者衔接)作为输出,Block的输出称为隐状态。对于第 i i i个Block,输入的候选范围包括前面 i − 1 i-1 i1个Block的隐状态以及前两个Cell的输出,Block的操作的候选空间如下图所示。
在这里插入图片描述
图2. Block操作的候选空间

与NAS论文里controller RNN预测每一个layer的操作参数不同,NASNet的controller RNN是用来预测Cell里面每一个Block的参数。具体如下图所示。
在这里插入图片描述
图3. NASNet的controller RNN

Block的参数预测步骤有:

  1. 从输入候选范围内选择两个隐状态作为Block的两个输入
  2. 从操作候选空间选择operation作为步骤1中两个输入的操作
  3. 选择一个操作用来结合步骤2中的两个输出

预测步骤总共会循环B次,直至预测出Cell所有Block结构为止。

Controller RNN的训练方法和NAS论文中一样,也是通过验证集的精度作为reward来优化controller的参数,采用的强化学习中的PPO(Proximal Policy Optimization)算法。

在训练的时候,只选择一种Normal和Reduction Cell,同一个网络中相同类型的Cell结构是共享的,所以controller RNN只需要预测一个Cell的结构即可。从搜索空间的复杂度来看,这种方法设计极大地减小了搜索的次数和范围,这种思想被后来的其他NAS论文广泛引用,后面的博客介绍的其他方法会持续提到。

作者在训练的过程还加了一种额外的技巧,即先在小的数据集上(如Cifar-10)搜索Cell结构,等搜索结果出来后,再堆叠更多的Cell,应用在大数据集上(如ImageNet)。这样在搜索的过程中,子网络模型训练的时间便大幅减小,提高搜索的效率。

在Cifar-10数据上,论文使用了500个GPU,搜索了4天的时间。相比NAS论文的实验,搜索效率提升了7倍。在训练子网络时,采用Scheduled DropPath的方法,以一定的概率(随着迭代的次数线性增加)随机扔掉Cell里的某些路径。下图是NASNet搜索出来的Normal和Reduction Cell的结构。
在这里插入图片描述
图5. 搜索出来的Normal和Reduction Cell结构图

论文把cifar-10上搜索出来的Cell结构迁移到ImageNet数据集上,表现出了很好的泛化能力。

以下两张图是NASNet搜索出来的Cell按照图1里的方式叠加成网络后训练出来的结果。可以看出,在同一参数量等级的模型上,NASNet比手工设计的网络模型精度更好,也比NAS论文的实验结果更优。
在这里插入图片描述
图6. Cifar-10实验结果和对比

在这里插入图片描述
图7. ImageNet实验结果和对比

这篇关于NASNet论文详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/317973

相关文章

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑