Vivado_除法器 IP核 使用详解

2023-10-31 18:50

本文主要是介绍Vivado_除法器 IP核 使用详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍使用Vivado中除法器Divider Generator(5.1)的使用方法。
参考资料:pg151

文章目录

  • Divider Generator
  • 仿真测试

Divider Generator

在这里插入图片描述
Channel Settings选项卡

#Common Options:
Algorithm Type:
一共有三种类型,分别是High Radix、LutMult、Radix2。用户可根据除数和被除数数位宽大小和延迟需求选择不同算法类型。
Opeand sign:
在High Radix类型下,仅支持Signed;在LutMult类型下,支持Unsigned和Signed;在Radix2类型下,支持Unsigned和Signed。

#Divivend Channel
Dividend Width: 设置被除数位宽,在不同算法类型下,支持的最大位宽不同。在High Radix类型和Radix2类型下,最大支持64位宽;在LutMult类型下,最大支持17位宽。
TLAST和TUSER端口,IP核不使用此端口信息,但会以与数据路径相同的延迟传输到输出通道。用户可以设置TUSER端口宽度。

#Divisor Channel
Divisor Width: 设置除数位宽,在不同算法类型下,支持的最大位宽不同。在High Radix类型和Radix2类型下,最大支持64位宽;在LutMult类型下,最大支持11位宽。
TLAST和TUSER端口,IP核不使用此端口信息,但会以与数据路径相同的延迟传输到输出通道。用户可以设置TUSER端口宽度。

#Output Channel
Remainder Type:设置余数类型。
设置为Remainder时,商和余数被认为是分开的,因此在连接成m_axis_dout_tdata信号之前是面向字节的。
设置为Fractional时,小数部分被认为是商的扩展,因此这两个字段在填充到下一个字节边界之前被连接起来。
在这里插入图片描述
如果勾选Detect Divide_By_Zero,则会多出一个m_axis_dout_tuser端口,以便在执行除0操作时发出信号。
在这里插入图片描述

注意:
商(Quotient)的位宽等于被除数(Dividend)的位宽。
整数余数(Remainder)的位宽度等于除数(Divisor )的宽度。
对于Fractional类型输出,余数位宽与被除数和被除数无关。
使用AXI4接口的输入输出端口在对应的数据字段都会拓展对齐到字节边界。
在这里插入图片描述

Options选项卡

Clocks Per Division: 确定Radix-2解决方案的吞吐量(输入(或输出)之间的时钟间隔)。此参数的值越低,吞吐量越高,但资源使用量也越大。

#AXI4-Stream Options
Flow Control: Blocking or NonBlocking。
具体区别参考Blocking阻塞模式与NonBlocking非阻塞模式

#Latency Configuration:
**Latency Configuration:**支持手动或自动配置延迟。
**Latency:**手动指定从输入到输出的延迟。
在不同算法类型下,不同配置有不同的延迟,具体可在PG151手册中查看。

仿真测试

module div_sim;
reg aclk;
reg s_axis_divisor_tvalid;
reg s_axis_dividend_tvalid;
reg [15:0] s_axis_divisor_tdata;
reg [15:0] s_axis_dividend_tdata;
wire m_axis_dout_tvalid;
wire [31:0] m_axis_dout_tdata;
wire [15:0] quotient;
wire [15:0] remainder;assign quotient = m_axis_dout_tdata[31:16];
assign remainder = m_axis_dout_tdata[15:0];initial beginaclk = 1'b1;forever #10 aclk = ~aclk;
endinitial begins_axis_dividend_tdata = 16'd0;s_axis_dividend_tvalid = 1'b0;s_axis_divisor_tvalid = 16'd0;s_axis_divisor_tdata = 1'b0;# 40;s_axis_dividend_tdata = 16'd12345;s_axis_dividend_tvalid = 1'b1;s_axis_divisor_tdata = 16'd100;s_axis_divisor_tvalid = 1'b1;# 60;s_axis_dividend_tdata = -16'd12345;s_axis_dividend_tvalid = 1'b1;s_axis_divisor_tdata = 16'd100;s_axis_divisor_tvalid = 1'b1;# 60;s_axis_dividend_tdata = 16'd12345;s_axis_dividend_tvalid = 1'b1;s_axis_divisor_tdata = -16'd100;s_axis_divisor_tvalid = 1'b1;# 60;s_axis_dividend_tdata = -16'd12345;s_axis_dividend_tvalid = 1'b1;s_axis_divisor_tdata = -16'd100;s_axis_divisor_tvalid = 1'b1;
enddiv_gen_0 inst0 (.aclk(aclk),                                      // input wire aclk.s_axis_divisor_tvalid(s_axis_divisor_tvalid),    // input wire s_axis_divisor_tvalid.s_axis_divisor_tdata(s_axis_divisor_tdata),      // input wire [15 : 0] s_axis_divisor_tdata.s_axis_dividend_tvalid(s_axis_dividend_tvalid),  // input wire s_axis_dividend_tvalid.s_axis_dividend_tdata(s_axis_dividend_tdata),    // input wire [15 : 0] s_axis_dividend_tdata.m_axis_dout_tvalid(m_axis_dout_tvalid),          // output wire m_axis_dout_tvalid.m_axis_dout_tdata(m_axis_dout_tdata)            // output wire [31 : 0] m_axis_dout_tdata
);endmodule

设置算法类型为Radix-2,设置除数和被除数为16位有符号数,输出设置为Remainder类型,延迟手动设置为10。
则输出dout[31:16]为商(Quotient),dout[15:0]为余数(Remainder)。
在这里插入图片描述
仿真图结果显示,输入tvalid到输出dout_tvalid的时间差为200ns,即延迟为10。
12345 ÷ 100 = 123 ⋯ 45 − 12345 ÷ 100 = ( − 123 ) ⋯ ( − 45 ) 12345 ÷ ( − 100 ) = ( − 123 ) ⋯ 45 − 12345 ÷ ( − 100 ) = 123 ⋯ ( − 45 ) \begin{matrix} 12345 \div 100 = 123 \cdots 45 \\-12345 \div 100 = (-123) \cdots (-45) \\12345 \div (-100) = (-123) \cdots 45 \\-12345 \div (-100) = 123 \cdots (-45) \end{matrix} 12345÷100=1234512345÷100=(123)(45)12345÷(100)=(123)4512345÷(100)=123(45)

输出设置为Fractional类型,设置为Fractional Width为16时,仿真结果和前一次相同。
为了体现两种输出模式的区别,设置为Fractional Width为12。
在这里插入图片描述
在这里插入图片描述
设置fractional的数据格式为实数,11位小数。
在这里插入图片描述
在这里插入图片描述
小数余数结果为0.4497、-0.4497、0.4497。

这篇关于Vivado_除法器 IP核 使用详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/317406

相关文章

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基