LINUX驱动开发中的红外(IRDA)程序

2023-10-31 17:10

本文主要是介绍LINUX驱动开发中的红外(IRDA)程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

红外遥控简介简介

红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机系统中。
由于红外线遥控不具有像无线电遥控那样穿过障碍物去控制被控对象的能力,所以,在设计红外线遥控器时,不必要像无线电遥控器那样,每套(发射器和接收器)要有不同的遥控频率或编码(否则,就会隔墙控制或干扰邻居的家用电器),所以同类产品的红外线遥控器,可以有相同的遥控频率或编码,而不会出现遥控信号“串门”的情况。这对于大批量生产以及在家用电器上普及红外线遥控提供了极大的方面。由于红外线为不可见光,因此对环境影响很小,再由红外光波动波长远小于无线电波的波长,所以红外线遥控不会影响其他家用电器,也不会影响临近的无线电设备。

红外遥控的编码目前广泛使用的是:NEC Protocol 的 PWM(脉冲宽度调制)和 Philips RC-5 Protocol的 PPM(脉冲位置调制)。 我使用的的遥控器使用的是NEC 协议,其特征如下:

  1. 8位地址和8位指令长度;
  2. 地址和命令2次传输(确保可靠性);
  3. PWM脉冲位置调制,以发射红外载波的占空比代表“ 0”和“ 1”;
  4. 载波频率为38Khz;
  5. 位时间为1.125ms或2.25ms;

NEC 码的位定义:一个脉冲对应560us的连续载波,一个逻辑 1 传输需要2.25ms(560us 脉冲+1680us 低电平),一个逻辑0的传输需要 1.125ms(560us 脉冲+560us 低电平)。而遥控接收头在收到脉冲的时候为低电平,在没有脉冲的时候为高电平,这样,我们在接收头端收到的信号为:逻辑1应该是560us低+1680us高,逻辑0应该是560us低+560us高。
NEC 遥控指令的数据格式为:同步码头、地址码、地址反码、控制码、控制反码。同步码由一个9ms的低电平和一个4.5ms的高电平组成,地址码、地址反码、控制码、控制反码均是8位数据格式。按照低位在前,高位在后的顺序发送。采用反码是为了增加传输的可靠性(可用于校验)。

【文章福利】小编推荐自己的Linux内核源码交流群:【869634926】整理了一些个人觉得比较好的学习书籍、视频资料共享在群里面,有需要的可以自行添加哦!!

1. ENC 协议的时序图

ENC特点如下:
1),协议规定低位首先发送。一串信息首先发送9ms的AGC(自动增益控制)的高脉冲,接着发送4.5ms的起始低电平,接下来是发送四个字节的地址码和命令码,这四个字节分别为:地址码;地址码反码;命令码;命令码反码。
2),如果你一直按那个按键,一串信息也只能发送一次,一直按着,发送的则是以110ms为周期的重复码。
3),接收到的信号是跟发送信号正好反向的。

2.重复码的格式

重复码的格式是由9ms的AGC高电平和4.5ms的低电平及一个560us的高电平组成。

3.逻辑“1”的表示

逻辑1的是由560us的高电平和1.69ms的低电平组成的脉冲表示。

4.逻辑“0”的表示

逻辑0的是有560us的高电平和565us的低电平组成的脉冲表示。

5.ENC的解码过程

一般ENC的解码过程为:
1),产生下降沿,进入外部中断15的中断函数,延时一下之后检测IO口是否还是低电平,是就等待9ms的低电平过去。
2),等待完9ms低电平过去,再去等待4.5ms的高电平过去。
3),接着开始接收传送的4组数据
①先等待560us的低电平过去
②检测高电平的持续时间,如果超过1.12ms那么是高电平(高电平的的持续时间为1.69ms,低电平的持续时间为565us。
4),检测接收到的数据和数据的反码进行比较,是否等到的数据是一样的。

6,下面直接写驱动程序

#include <linux/init.h>
#include <linux/module.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/ktime.h>#include <mach/gpio.h>#define IRDA_GPIO   EXYNOS4_GPX3(2)int flag = 0;               // 表示数据帧的开始
int num = 0;                // 表示数据帧里的第几位数据
static long long prev = 0;  // 64bit,记录上次的时间
unsigned int times[40];     // 记录每位数据的时间irqreturn_t 
infrared_irq_handler(int irqno, void *dev_id)
{long long now = ktime_to_us(ktime_get());unsigned int offset;int i, j, tmp;if(!flag){  // 数据开始flag = 1;prev = now;return IRQ_HANDLED;}offset = now - prev;prev = now;if((offset > 13000) && (offset < 14000)){   // 判断是否收到引导码num = 0;return IRQ_HANDLED;}if(num < 32)times[num++] = offset;if(num >= 32){for(i = 0; i < 4; i++){ // 一共4个字节tmp = 0;for(j = 0; j < 8; j++){if(times[i * 8 + j] > 2000) // 如果数据位的信号周期大于20ms,则是二进制数据1tmp |= 1 << j;}printk("%02x ", tmp);}printk("\n");flag = 0;}return IRQ_HANDLED;
}static void __exit
infrared_drv_exit(void)
{free_irq(gpio_to_irq(IRDA_GPIO), NULL);
}static int __init
infrared_drv_init(void)
{int ret = -1;ret = request_irq(gpio_to_irq(IRDA_GPIO), infrared_irq_handler, IRQF_TRIGGER_FALLING, "infrared", NULL);if(ret < 0){printk("request irq failed !\n");return ret;}return 0;
}module_init(infrared_drv_init);
module_exit(infrared_drv_exit);MODULE_LICENSE("GPL");

还有对应的Makefile:

#指定内核源码路径
KERNEL_DIR = /home/george/1702/exynos/linux-3.5#指定当前路径
CUR_DIR = $(shell pwd)#MYAPP = dht11_app
MODULE = IRDA_for_irqall:make -C $(KERNEL_DIR) M=$(CUR_DIR) modules
#	arm-none-linux-gnueabi-gcc -o $(MYAPP) $(MYAPP).c
clean:make -C $(KERNEL_DIR) M=$(CUR_DIR) clean$(RM) $(MYAPP)
install:cp -raf *.ko $(MYAPP) /home/george/1702/exynos/filesystem/1702#指定编译当前目录下那个源文件
obj-m = $(MODULE).o

编译生成.ko文件之后,装载,然后进行实物测试,验证效果图如下:

这篇关于LINUX驱动开发中的红外(IRDA)程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/316853

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流