数理基础之轨道力学的三体问题,了解如何推导轨道力学中研究最多的问题(用于设计 James Webb 太空望远镜轨道)...

本文主要是介绍数理基础之轨道力学的三体问题,了解如何推导轨道力学中研究最多的问题(用于设计 James Webb 太空望远镜轨道)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三体问题

让我们首先了解什么是三体问题。三体问题(或 3BP)是更广泛的n体问题的特例,它涉及预测天体在彼此引力影响下的运动。与更简单的二体问题 (2BP) 不同,三体问题没有封闭形式的解。这意味着必须使用初始条件(位置和速度)和数值方法来估计物体的运动。对于实际应用,3BP 可以专注于围绕两个较大质量(也称为初选)运行的卫星的运动;这些可能是卫星、行星或恒星。

一颗卫星在两个较大的主星影响下的运动通常是混乱的,这意味着该运动很难预测。这就是我们使用现代数值方法尽可能准确地估计/预测此运动的原因。为了估计 3BP 运动,需要创建一个模型,其中涉及使用牛顿运动定律和牛顿万有引力定律。推导可能难以理解。这是一个更简单的推导,可以帮助您更好地理解后续的推导。现在,开始理解任何物理问题的最佳起点是精心绘制的图表。

3BP图

三体问题

上图显示了 3BP 的标准设置。初级表示为m₁和m₂,其中m₁通常是两个质量中较大的一个。卫星(或其运动感兴趣的物体)被标记为m₃。尽管我们将卫星标记为质量 3,但出于实际目的,与主卫星相比,该质量可以忽略不计。由于第三个质量被认为可以忽略不计,因此较大的两个质量的轨道可以被认为是圆锥 (2BP) 轨道。这大大简化了推导。此外,通常研究椭圆和圆形主轨道的特殊情况,称为椭圆限制 3BP (ER3BP) 或圆形限制 3BP (CR3BP)。

考虑到这一点,两个原色的重心或质心可以被认为是一个惯性点,标记为O。该系统中有两个固定在重心的坐标系:一个随原色旋转的旋转坐标系(x-和y -hat)和一个不旋转的惯性坐标系(X-和Y -hat)。在任何给定时间,这两个帧都以角度θ分隔。还有一些位置向量(d₁、d₂、r₁、r₂和ρ) 确定质量相对于惯性重心的位置(对于使用牛顿运动定律很重要)和m₃相对于原色的位置。此推导的相关向量是ρ,因为它将确定卫星的惯性运动。

无量纲化

可怕的词,我知道,但它并不像看起来那么复杂。这不是必要的步骤,但确实可以更轻松地推导 3BP 的运动方程。无量纲化是一种从问题中提取物理维度的方法,对于简化数学表达式很有用。让我们以 3BP 为例。我们可以如下定义质量、长度和时间的无量纲化参数(按照惯例):

image.png

这里,a是两个原色运动的半长轴,G是万有引力常数。这可能还没有意义,所以我将演示如何将地月系统中的一组初始条件(本例中的两个初始条件)无量纲化。该特定系统的无量纲化参数为:

image.png

现在,如果我们有一个状态向量(位置和速度向量的组合),那么我们可以按如下方式对其进行无量纲化:

image.png

请注意,无量纲向量没有单位,我们使用维度参数删除了km和s单位。此过程反向进行,因此如果您想重新添加维度,只需乘以或除以L、M或T*。

推导 ER3BP 运动方程

制定三体问题的最后也是最长的一步是推导可忽略质量m₃ 的运动方程。首先,我们需要做一些假设,其中一些已经提到过。我们假设m₃ << m₁和m₂;这意味着m₁和m₂以不受扰动的二体运动(开普勒运动)运动。此外,m₁和m₂被视为质点(这简化了推导)。我们将从m₁和m₂的情况开始推导在围绕重心 (ER3BP) 的椭圆轨道上移动,然后简化此结果以获得 CR3BP。为了方便起见,我们首先定义质量比:

image.png

下一步是将牛顿第二运动定律和牛顿万有引力定律应用于m₃。

image.png

上面的等式是m₃的维度加速度(刻度代表二阶时间导数)。现在,无量纲化参数可用于通过将加速度乘以 ( T* )² 再除以L*来从系统中移除物理维度(因为加速度的单位是长度与时间的平方)。

image.png

在上面的等式中, ρ向量上方的点代表 ND 二阶时间导数,r₁和r2是 ND 向量。现在我们可以使用运动学来确定m₃的速度和加速度的分量。这对于创建运动方程的标量形式很重要。基本运动学方程或BKE可用于执行此操作:

image.png

将 BKE 应用于ρ以获得一阶时间导数或速度

image.png

使用椭圆轨道的 2BP 几何,您可以导出θ的变化率:

image.png

这里,h是m₁ - m₂系统的比角动量,R是两个主要质量之间的瞬时距离(在 ER3BP 中随时间变化),e是椭圆轨道的偏心率,E是偏心异常. 现在,再次应用 BKE 以获得加速:

image.png

接下来,我们可以结合加速度矢量的两个方程,但首先我们应该从图中定义位置矢量。d₁和d₂是使用二粒子系统质心方程定义的(因为m₃可以忽略不计)。r₁、r₂和ρ可以使用图表和向量减法来定义。

image.png

现在,我们可以在第一个加速度方程中使用r₁和r₂的定义,然后将ρ加速度方程组合如下:

image.png

组合等式 (1) 和 (2) 的类似项(x -hat、y -hat 和z -hat):

image.png

上述方程表示旋转坐标系中m₃的 ER3BP 运动方程。ER3BP 很难与θ项进行数值积分;但是,可以做出假设来简化方程以获得 CR3BP,这是一个更容易集成的问题。在 CR3BP 中,原色围绕质心在圆形轨道上运动。这意味着:

image.png

然后,使用这些新假设简化 ER3BP 方程:

image.png

这些方程表示m₃的 CR3BP 运动方程。可以对它们进行数值积分,以获得旋转坐标系中m₃的位置和速度的时间历程。请注意,对于 CR3BP,原色将在旋转坐标系中保持静止。为了从 CR3BP 中的旋转矢量获得惯性矢量,我们可以使用以下等式:

image.png

此处,x、y和z表示旋转坐标系矢量分量,X、Y和Z表示惯性坐标系矢量分量。


http://www.taodudu.cc/news/show-8110556.html

相关文章:

  • 源码解析之访问osgi felix bundle中的文件和资源
  • 【记录七】org.apache.felix.scr.annotations @Reference
  • CNI 网络流量 4.3 Calico felix
  • mysql 金额显示负数_收支明细表里面的金额,为什么突然全部显示为负数
  • 家庭收支記賬項目登記----面向對象
  • 收支明细,如何添加多个账号进行记账
  • 家庭收支登记表
  • JAVA实现收支记账项目
  • MySQL春节收支表怎么建立_怎么用SQL语句对表【收支表】进行分类汇总?
  • mysql一些明细表怎么处理_mysql 关于用户账目明细设计的问题
  • PHP编程之收入支出明细表实现技术
  • 携程校招内部推荐-----简历直通+Offer优先发放!!!
  • 2024携程校招面试真题汇总及其解答(一)
  • 2024携程校招面试真题汇总及其解答(二)
  • 太强了!仅凭“阿里爸爸”大厂面试参考笔记,去携程Java三面,已OC
  • 抱歉,吾不会回访
  • 请勿要求回访博客
  • 全智通A+——回访评分统计查询超时——V6.19.1009
  • 使用FreeSWITCH做电话自动回访设置
  • Linux录制,回访和共享终端操作
  • 咨询回访的原先界面
  • 计算机毕业设计ssm毕业生回访系统564c4系统+程序+源码+lw+远程部署(2)
  • linux录屏与回访之script
  • ssm毕设项目毕业生回访系统564c4(java+VUE+Mybatis+Maven+Mysql+sprnig)
  • jmeter回访web脚本以及联调--57
  • SEO人员,如何提高用户回访率?
  • Hive统计每日新增及其二日和三十日回访比例
  • 回访机器人大展身手,你见过如此有才的“AI”机器人吗?
  • 电商回访模块设计
  • 题解 | #给出表中排名为奇数行的first_name#
  • 这篇关于数理基础之轨道力学的三体问题,了解如何推导轨道力学中研究最多的问题(用于设计 James Webb 太空望远镜轨道)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/316063

    相关文章

    解决pandas无法读取csv文件数据的问题

    《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

    解决RocketMQ的幂等性问题

    《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

    Mysql中设计数据表的过程解析

    《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

    深度解析Nginx日志分析与499状态码问题解决

    《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

    kkFileView启动报错:报错2003端口占用的问题及解决

    《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

    SpringBoot 异常处理/自定义格式校验的问题实例详解

    《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

    Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

    《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

    Spring的RedisTemplate的json反序列泛型丢失问题解决

    《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

    Kotlin Map映射转换问题小结

    《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

    nginx中端口无权限的问题解决

    《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx