Python 遇见茶文化,鉴茶指南

2023-10-31 10:40

本文主要是介绍Python 遇见茶文化,鉴茶指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

151e4a64462be6b303f9e21a9966cde5.png

2337522fddeb7cbd31a373ecf14b7da6.png

Start

阅读本文及源码,可以和小编一起学到 xpath 表达式爬取数据,多进程爬取,pandas 基本操作,pyecharts 可视化,stylecloud 词云,文本余弦相似度相似度,KMeans,关键词提取算法:TextRank,TF-IDF,LDA 主题模型。

源码获取在文末

前言

最近上班买了点茶叶,搞了一个 1L 的杯子放桌上,每天泡茶想着喝那么久的茶,还没怎么了解过茶,于是从数据的角度来探索一下茶。

小编找到一个和茶有关网站:

https://chaping.chayu.com/?bid=1

5e46d5b812ecdc4023f19e21dcef5c4b.png

数据获取

从首页进入茶评,可以看到所有茶的基本信息,结果有多页,获取所有的基本信息包括标题,评分,品牌,产地,茶类,详细链接,id:

93cf7d645c2d14cd59f62a60bef95f12.png

b2984bfb10c12cb28b9b55d284f4fc95.png

再根据获得的链接,下钻爬取每一种茶的推荐指数,总评,所有排行:

07acc999d314b719312049d1653f3c74.png

及爬取对应的评论,有多页就爬取多页,包含字段评论人,评论人等级,评分,评论,评论时间:

f579cf204a81ee57db8b86454fa1e74b.png

79eda372e38c911745d3804c020962ad.png

最后保存为 tea.csv,comment.csv 两个 csv:

8b67216758b5fab6f482e8c606324185.png

2d30bcb07a9b9f371e8cb0340b344bc5.png

整个爬虫流程就这样,使用了 xpath 提取,多进程爬取,逻辑不算复杂,详细实现逻辑可查看源码。

数据分析

总共获得 3w 条数据,获得数据后就可以开始进行探索了。

先对标题进行查看,标题是由品牌及名称构成,处理为只保留名称部分,绘制词云。

红茶,白杜丹,铁观音,绿茶,毛尖等一些听到过的茶名称还是比较多的:

51a77f49cee01151fa069bedba5596bf.png

茶评分取值为 0-10,对评分每两分进行切分后绘制直方图。

从结果上看,评分都挺高的,只有个别评分是低于 4 分的,小编选出数据看了看,总评价对这些低分的茶评价不是特别友好:

35e30f70dca5855a84cb5c9e1aa8b7d5.png

现在基本上每种茶都有专门的品牌在售卖,对品牌进行统计,绘制词语。

发现斗记茶业,中茶,大益,天福茗茶等较为突出,这些品牌就算不了解茶,但多多少少也听到过在大街上看到过:

720eacc13329228b73f3205c0945a8b8.png

每种茶都有它独特的产地,对产地绘制热力地图。

发现产地来自云南的是最多的,多达上千种,小编查了查,云南茶叶最重要的原产地,云南是茶叶最为古老的故乡。

其次是福建,有着一千多年的茶文化历史,是最中国产茶的重要产地:

23dedacc8879a2163ec5d3acfb50493c.png

目前茶类可分为普洱,绿茶,红茶,乌龙,黑茶,白茶,花茶,黄茶,袋泡,速溶茶十大类,每个大类别有细分很多小类,对每个大类进行统计绘制柱状图。

发现普洱茶是类别最多的,其次是绿茶,红茶,看到这里小编想到自己都很少喝普洱茶:

bbd27e2c5a777ef41f8948c256e61e1c.png

热搜能从侧面反映一种茶受不受欢迎,小编选出热搜排名前 10 的茶,拉出明细。

发现排名第一的是经典普洱,普洱也是种类最多的茶,以后可以特地买一点试试:

142b053315ff61e9c0b23513ddb98951.png

对评论时间以时间年月为维度,同比每一年每一月的评论走势图。

发现评论用户 14-17 年活跃程度是一直攀升,之后下跌了:

45404c91658af6998e61269c0942a91d.png

到这里,探索性分析就完成了,主要用到了 ,pandas,stylecloud,jieba,pyecharts 这些技术,详细实现过程可参考源码。

关键词提取

在获得的数据中,有总评字段,即对每一种茶的评语,有每一个用户评论的字段,利用这两个字段来实现文本关键词提取。

对于总评,我们想把总评相似的茶分到一起,可以使用 KMeans 聚类算法,但总评是文本数据。

需要先提取每条总评中的关键词,使用了 TextRank 算法提取关键词,原理是基于句子进行分词,对每个词进行权重打分,获得分数高的作为关键词。

对关键词向量化,再计算余弦相似度,最后使用聚类算法,分为了两种种类。

种类一主要是从品尝方向进行评价的,香气,滋味,入口,顺滑等。

种类二主要是从外表方向进行评价的,外形,条索,色泽,原料等:

95f3c531807982ffb864433e34c1685c.png

对评论先使用了 TF-IDF 算法进行关键词的提取,是有 TF,IDF 两部分算法组成。

TF,计算每一个词在所有文本中出现的频率。

IDF,计算每一个词在所有评论中,在多少条评论中出现的次数,映射一个分值。

最后 TF*IDF 选出分值前 10 的关键词:

8c853c5776eb897f9ea800d0be095043.png

第二种方法是利用主题模型 LDA 进行关键词提取,需要先确定主题数,再提取关键词,这里就选取 1 个主题,及前 10 关键词:

0dc6c55edd66a3a17f1b2e453b3e52ba.png

8532a5d7109857127efdda35cc46b79c.png

对于 LDA 主题模型的使用,可以参考小编之前的文章:

《炎炎夏日,漂流去哪漂?评论情感分析告诉你》

可以看到两种方式提取出来的关键词大部分相似,可以根据场景进行选择。

源码获取

在公众号回复关键字“tea”即可获取

END

读者交流群已建立,找到我备注 “交流”,即可获得加入我们~

听说点 “赞” 的都变得更好看呐~

关注关注小编呗~小编给你分享爬虫,数据分析,可视化的内容噢~

扫一扫下方二维码即可关注我噢~

-END-

265d1800dfa8d4a7c91a5e4eb476a443.png

这篇关于Python 遇见茶文化,鉴茶指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314770

相关文章

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

springboot集成Lucene的详细指南

《springboot集成Lucene的详细指南》这篇文章主要为大家详细介绍了springboot集成Lucene的详细指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起... 目录添加依赖创建配置类创建实体类创建索引服务类创建搜索服务类创建控制器类使用示例以下是 Spring

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板