Python 遇见茶文化,鉴茶指南

2023-10-31 10:40

本文主要是介绍Python 遇见茶文化,鉴茶指南,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

151e4a64462be6b303f9e21a9966cde5.png

2337522fddeb7cbd31a373ecf14b7da6.png

Start

阅读本文及源码,可以和小编一起学到 xpath 表达式爬取数据,多进程爬取,pandas 基本操作,pyecharts 可视化,stylecloud 词云,文本余弦相似度相似度,KMeans,关键词提取算法:TextRank,TF-IDF,LDA 主题模型。

源码获取在文末

前言

最近上班买了点茶叶,搞了一个 1L 的杯子放桌上,每天泡茶想着喝那么久的茶,还没怎么了解过茶,于是从数据的角度来探索一下茶。

小编找到一个和茶有关网站:

https://chaping.chayu.com/?bid=1

5e46d5b812ecdc4023f19e21dcef5c4b.png

数据获取

从首页进入茶评,可以看到所有茶的基本信息,结果有多页,获取所有的基本信息包括标题,评分,品牌,产地,茶类,详细链接,id:

93cf7d645c2d14cd59f62a60bef95f12.png

b2984bfb10c12cb28b9b55d284f4fc95.png

再根据获得的链接,下钻爬取每一种茶的推荐指数,总评,所有排行:

07acc999d314b719312049d1653f3c74.png

及爬取对应的评论,有多页就爬取多页,包含字段评论人,评论人等级,评分,评论,评论时间:

f579cf204a81ee57db8b86454fa1e74b.png

79eda372e38c911745d3804c020962ad.png

最后保存为 tea.csv,comment.csv 两个 csv:

8b67216758b5fab6f482e8c606324185.png

2d30bcb07a9b9f371e8cb0340b344bc5.png

整个爬虫流程就这样,使用了 xpath 提取,多进程爬取,逻辑不算复杂,详细实现逻辑可查看源码。

数据分析

总共获得 3w 条数据,获得数据后就可以开始进行探索了。

先对标题进行查看,标题是由品牌及名称构成,处理为只保留名称部分,绘制词云。

红茶,白杜丹,铁观音,绿茶,毛尖等一些听到过的茶名称还是比较多的:

51a77f49cee01151fa069bedba5596bf.png

茶评分取值为 0-10,对评分每两分进行切分后绘制直方图。

从结果上看,评分都挺高的,只有个别评分是低于 4 分的,小编选出数据看了看,总评价对这些低分的茶评价不是特别友好:

35e30f70dca5855a84cb5c9e1aa8b7d5.png

现在基本上每种茶都有专门的品牌在售卖,对品牌进行统计,绘制词语。

发现斗记茶业,中茶,大益,天福茗茶等较为突出,这些品牌就算不了解茶,但多多少少也听到过在大街上看到过:

720eacc13329228b73f3205c0945a8b8.png

每种茶都有它独特的产地,对产地绘制热力地图。

发现产地来自云南的是最多的,多达上千种,小编查了查,云南茶叶最重要的原产地,云南是茶叶最为古老的故乡。

其次是福建,有着一千多年的茶文化历史,是最中国产茶的重要产地:

23dedacc8879a2163ec5d3acfb50493c.png

目前茶类可分为普洱,绿茶,红茶,乌龙,黑茶,白茶,花茶,黄茶,袋泡,速溶茶十大类,每个大类别有细分很多小类,对每个大类进行统计绘制柱状图。

发现普洱茶是类别最多的,其次是绿茶,红茶,看到这里小编想到自己都很少喝普洱茶:

bbd27e2c5a777ef41f8948c256e61e1c.png

热搜能从侧面反映一种茶受不受欢迎,小编选出热搜排名前 10 的茶,拉出明细。

发现排名第一的是经典普洱,普洱也是种类最多的茶,以后可以特地买一点试试:

142b053315ff61e9c0b23513ddb98951.png

对评论时间以时间年月为维度,同比每一年每一月的评论走势图。

发现评论用户 14-17 年活跃程度是一直攀升,之后下跌了:

45404c91658af6998e61269c0942a91d.png

到这里,探索性分析就完成了,主要用到了 ,pandas,stylecloud,jieba,pyecharts 这些技术,详细实现过程可参考源码。

关键词提取

在获得的数据中,有总评字段,即对每一种茶的评语,有每一个用户评论的字段,利用这两个字段来实现文本关键词提取。

对于总评,我们想把总评相似的茶分到一起,可以使用 KMeans 聚类算法,但总评是文本数据。

需要先提取每条总评中的关键词,使用了 TextRank 算法提取关键词,原理是基于句子进行分词,对每个词进行权重打分,获得分数高的作为关键词。

对关键词向量化,再计算余弦相似度,最后使用聚类算法,分为了两种种类。

种类一主要是从品尝方向进行评价的,香气,滋味,入口,顺滑等。

种类二主要是从外表方向进行评价的,外形,条索,色泽,原料等:

95f3c531807982ffb864433e34c1685c.png

对评论先使用了 TF-IDF 算法进行关键词的提取,是有 TF,IDF 两部分算法组成。

TF,计算每一个词在所有文本中出现的频率。

IDF,计算每一个词在所有评论中,在多少条评论中出现的次数,映射一个分值。

最后 TF*IDF 选出分值前 10 的关键词:

8c853c5776eb897f9ea800d0be095043.png

第二种方法是利用主题模型 LDA 进行关键词提取,需要先确定主题数,再提取关键词,这里就选取 1 个主题,及前 10 关键词:

0dc6c55edd66a3a17f1b2e453b3e52ba.png

8532a5d7109857127efdda35cc46b79c.png

对于 LDA 主题模型的使用,可以参考小编之前的文章:

《炎炎夏日,漂流去哪漂?评论情感分析告诉你》

可以看到两种方式提取出来的关键词大部分相似,可以根据场景进行选择。

源码获取

在公众号回复关键字“tea”即可获取

END

读者交流群已建立,找到我备注 “交流”,即可获得加入我们~

听说点 “赞” 的都变得更好看呐~

关注关注小编呗~小编给你分享爬虫,数据分析,可视化的内容噢~

扫一扫下方二维码即可关注我噢~

-END-

265d1800dfa8d4a7c91a5e4eb476a443.png

这篇关于Python 遇见茶文化,鉴茶指南的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314770

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1