LCT(Link-Cut Tree)详解(蒟蒻自留地)

2023-10-31 08:32
文章标签 详解 link tree cut lct 自留地

本文主要是介绍LCT(Link-Cut Tree)详解(蒟蒻自留地),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 最近自学了LCT,发现网上的资料讲解不是很全面,像我这样的蒟蒻一时半会根本理解不了。我弄了很久总算是理解了LCT,打算总结一下LCT的基本操作,还请诸位神牛来找找茬。

 

如果你还没有接触过LCT,你可以先看一看这里:

(看不懂没关系,先留个大概的印像)http://www.cnblogs.com/BLADEVIL/p/3510997.html

看完之后我们知道,LCT和静态的树链剖分很像。怎么说呢?这两种树形结构都是由若干条长度不等的“重链”和“轻边”构成(名字可以不同,大概就是这个意思),“重链”之间由”轻边”连接。就像这样:


可以想象为一棵树被人为的砍成了一段段。


        LCT和树链剖分不同的是,树链剖分的链是不会变化的,所以可以很方便的用线段树维护。但是,既然是动态树,那么树的结构形态将会发生改变,所以我们要用更加灵活的维护区间的结构来对链进行维护,不难想到Splay可以胜任。如何分离树链也是保证时间效率的关键(链的数量和长度要平衡),树链剖分的“重儿子”就体现了前人博大精深的智慧。


        在这里解释一下为什么要把树砍成一条条的链:我们可以在logn的时间内维护长度为n的区间(链),所以这样可以极大的提高树上操作的时间效率。在树链剖分中,我们把一条条链放到线段树上维护。但是LCT中,由于树的形态变化,所以用能够支持合并、分离、翻转等操作的Splay维护LCT的重链(注意,单独一个节点也算是一条重链)。

        这时我们注意到,LCT中的轻边信息变得无法维护。为什么呢?因为Splay只维护了重链,没有维护重链之间的轻边;而LCT中甚至连根都可以不停的变化,所以也没法用点权表示它父边的边权(父亲在变化)。所以,如果在LCT中要维护边上信息,个人认为最方便的方法应该是把边变成一个新点和两条边。这样可以把边权的信息变成点权维护,同时为了不影响,把真正的树上节点的点权变成0,就可以用维护点的方式维护边。

 

LCT的各种操作:

        LCT中用Splay维护链,这些Splay叫做“辅助树“。辅助树以它上面每个节点的深度为关键字维护,就是辅助树中每个节点左儿子的深度小于当前节点的深度,当前节点的深度小于右儿子的深度。

        可以把LCT认为是一个由Splay组成的森林,就像这样:(三角形代表一棵Splay,对应着LCT上一条链)


 

箭头是什么意思呢?箭头记录着某棵Splay对应的链向上由轻边连着哪个节点,可以想象为箭头指向“Splay 的父亲”。但是,Splay的父亲并不记录有这个儿子,即箭头是单向的。同时,每个节点要记录它是否是它所在的Splay的根。这样,Splay构成的森林就建成了。


这个是我的Splay节点最基本的定义:(如果要维护更多信息就像Splay维护区间那样加上更多标记)

struct node{int fa,ch[2]; //父亲和左右儿子。bool reverse,is_root;   //区间反转标记、是否是所在Splay的根
}T[maxn];


LCT中基本的Splay上操作:

int getson(int x){return x==T[T[x].fa].ch[1];
}
void pushreverse(int x){if(!x)return;swap(T[x].ch[0],T[x].ch[1]);T[x].reverse^=1;
}
void pushdown(int x){if(T[x].reverse){pushreverse(T[x].ch[0]);pushreverse(T[x].ch[1]);T[x].reverse=false;}
}
void rotate(int x){if(T[x].is_root)return;int k=getson(x),fa=T[x].fa;int fafa=T[fa].fa;pushdown(fa);pushdown(x);    //先要下传标记T[fa].ch[k]=T[x].ch[k^1];if(T[x].ch[k^1])T[T[x].ch[k^1]].fa=fa;T[x].ch[k^1]=fa;T[fa].fa=x;T[x].fa=fafa;if(!T[fa].is_root)T[fafa].ch[fa==T[fafa].ch[1]]=x;else T[x].is_root=true,T[fa].is_root=false;//update(fa);update(x);    //如果维护了信息,就要更新节点
}
void push(int x){if(!T[x].is_root)push(T[x].fa);pushdown(x);
}
void Splay(int x){push(x);   //在Splay到根之前,必须先传完反转标记for(int fa;!T[x].is_root;rotate(x)){if(!T[fa=T[x].fa].is_root){rotate((getson(x)==getson(fa))?fa:x);}}
}






access操作:

这是LCT最核心的操作。其他所有操作都要用到它。

他的含义是”访问某节点“。作用是:对于访问的节点x,打通一条从树根(真实的LCT树)到x的重链;如果x往下是重链,那么把x往下的重边改成轻边。可以理解为专门开辟一条x到根的路径,由一棵Splay维护这条路径。

access之前:(粗的是重链)        access之后:

 

access实现的方式很简单;

        先把x旋转到所在Splay的根,然后把x的右孩子的is_root设为true(此时右孩子对应的是x下方的重链,这样就断开了x和下方的重链)。

        用y记录上一次的x(初始化y=0),把y接到x的右孩子上,这样就把上一次的重链接到了当前重链一起,同时记得T[y].is_root=false。

        记录y=x,然后x=T[x].fa,把x上提。重复上面的步骤直到x=0。

代码:

void access(int x){int y=0;do{Splay(x);T[T[x].ch[1]].is_root=true;T[T[x].ch[1]=y].is_root=false;//update(x);    //如果维护了信息记得更新。x=T[y=x].fa;}while(x);
}




mroot操作:

         这个操作的作用是把某个节点变成树根(这里的根指的是整棵LCT的根)。加上access操作,就可以方便的提取出LCT上两点之间的路径。提取u到v的路径只需要mroot(u),access(v),然后v所在的Splay对应的链就是u到v的路径。

mroot实现的方式:

         由于LCT是Splay组成的森林,所以要把x变成根就只需要让所有Splay的父亲最终指向x所在Splay。所以先access(x),Splay(x),把现在的根和将成为根的x链在一棵Splay中,并转到根即可。但是我们注意到,由于x成为了新的根,所以它和原来的根所在的Splay中深度作为关键字的性质遭到了破坏:新根x应该是Splay中深度最小的,但是之前的操作并不会改变x的深度(也就是目前x依旧是当前Splay中深度最深的)。所以,我们需要把所在的这棵Splay翻转过来。

(粗的是重链,y是原来的根)

翻转前:                                                                      翻转后:

 

这时候x才真正变成了根。

代码:

void mroot(int x){access(x);Splay(x);pushreverse(x);
}




link操作:

这个操作的作用是连接两棵LCT。对于link(u,v),表示连接u所在的LCT和v所在的LCT;

link实现的方式:

很简单,只需要先mroot(u),然后记录T[u].fa=v就可以了,就是把一个Splay森林连到另一个上。

代码:

void link(int u,int v){mroot(u);T[u].fa=v;
}




cut操作:

         这个操作的作用是分离出两棵LCT。

代码:

void cut(int u,int v)mroot(u);   //先把u变成根access(v);Splay(v);    //连接u、vpushdown(v);     //先下传标记T[u].fa=T[v].ch[0]=0;//v的左孩子表示v上方相连的重链//update(v);  //记得维护信息
}




这些就是LCT的基本操作。我推荐几个LCT的练习题:


bzoj2049 SDOI2008洞穴勘探

模板题,只需要linkcut,然后询问连通性。题解:

http://blog.csdn.net/saramanda/article/details/55210235


bzoj2002 HNOI2010弹飞绵羊

模板题,需要link和询问某点到根的路径长度。题解:

http://blog.csdn.net/saramanda/article/details/55210418


bzoj3669 NOI2014魔法森林

LCT的综合应用。题解:

http://blog.csdn.net/saramanda/article/details/55250852

这篇关于LCT(Link-Cut Tree)详解(蒟蒻自留地)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/314089

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input