分治(详解残缺棋盘 —— Java代码实现)

2023-10-30 22:51

本文主要是介绍分治(详解残缺棋盘 —— Java代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 分治
    • 总体思想
    • 使用条件
    • 基本步骤
    • 案例
      • 覆盖残缺棋盘
      • 大整数的乘法
      • Strassen矩阵乘法

分治

总体思想

  • 将要求解的较大规模的问题分割成k个更小规模子问题
  • 对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k为子问题,如此递归进行下去,直到问题规模足够小,很容易求出其解为止
  • 将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来的问题的解

使用条件

  • 该问题的规模缩小到一定的程度就可以容易地解决
  • 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质
  • 利用该问题分解出的子问题的解可以合并为该问题的解
  • 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题

能否利用分治法完全取决于子问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划

基本步骤

divide-and-conquer(P) {if (|P| <= n0) abhoc(P);  // 解决小规模的问题divide P into smaller subinstances P1, P2 ,... ,Pk  // 分解问题for (i = 1; i <= k; i++) {yi = divide-and-conquer(Pi);  // 递归的解各子问题return merge(y1, ... ,yk)  // 将各子问题的解合并为原问题的解}
}

案例

覆盖残缺棋盘

  • 在一个2k×2k 个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。
  • 用 (n2) / 3个三重格放置在 n × n 的缺陷棋盘上,正好能够覆盖所有方格


具体步骤:

  • 划分为四个小棋盘

  • 其中一个是 4 × 4 缺陷棋盘

  • 在其他三个 4 × 4 棋盘都都相邻的拐角上放一个三格板,使它们也成为缺陷棋盘

  • 递归地覆盖四个4×4缺陷棋盘

  • 在其它三个 4 × 4 棋盘都相邻的拐角上放一个三格板,使它们也成为缺陷棋盘。

Java代码实现

package Chess;public class Chess {// 表示棋盘private int[][] board;// 表示棋盘的大小为2的多少次方private int boardSize;// 棋盘中特殊方格的位置(行号,列号)private int dr, dc;private int tile = 1;public Chess() {board = new int[1][1];dr = 0;dc = 0;boardSize = 0;}public Chess(int r, int c, int s) {int n;n = (int) Math.pow(2, s);if (n <= r || n <= c)System.out.println("初始化参数错误!");else {board = new int[n][n];dr = r;dc = c;boardSize = s;}}public void Print() {for (int i = 0; i < Math.pow(2, this.boardSize); i++) {for (int j = 0; j < Math.pow(2, this.boardSize); j++) {System.out.printf("%3d|", this.board[i][j]);}System.out.println();}}public static void main(String[] args) {// 2^2*2^2棋盘, 假设特殊方格位置为(3, 3)Chess c1 = new Chess(3, 3, 2);c1.chessBoard(0, 0, c1.dr, c1.dc, (int)Math.pow(2, c1.boardSize));c1.Print();}/*** @param tr:棋盘左上角方格的行号* @param tc:棋盘左上角方格的列号* @param dr:特殊方格所在的行号* @param dc:特殊棋盘所在的列号* @param size:2^k, 棋盘的规格为 2^k*2^k**/public void chessBoard(int tr, int tc, int dr, int dc, int size) {if (size == 1) return;// t: L型骨牌号,s分割棋盘int t = tile++;int s = size / 2;// 覆盖左上角棋盘if (dr < tr + s && dc < tc + s) {// 特殊方格在此棋盘中chessBoard(tr, tc, dr, dc, s);} else { // 此棋盘中无特殊方格则用t号L型骨牌覆盖右下角board[tr + s - 1][tc + s - 1] = t;// 覆盖其余方格chessBoard(tr, tc, tr + s - 1, tc + s - 1, s);}// 覆盖右上角子棋盘if (dr < tr + s && dc >= tc + s) {// 特殊方格在此棋盘中chessBoard(tr, tc + s, dr, dc, s);} else {// 无特殊方格,用t号骨牌覆盖左下角board[tr + s - 1][tc + s] = t;chessBoard(tr, tc + s, tr + s - 1, tc + s, s);}// 覆盖左下角棋盘if (dr >= tr + s && dc < tc + s) {chessBoard(tr + s, tc, dr, dc, s);} else {// 无特殊方格,用t号骨牌覆盖右上角board[tr + s][tc + s - 1] = t;chessBoard(tr + s, tc, tr + s, tc + s - 1, s);}// 覆盖右下角棋盘if (dr >= tr + s  && dc >= tc + s) {// 特殊方格在此棋盘中chessBoard(tr + s, tc + s, dr, dc, s);} else {// 无特殊方格,用t号骨牌覆盖左上角board[tr + s][tc + s] = t;chessBoard(tr + s, tc + s, tr + s, tc + s, s);}}
}
  2|  2|  3|  3|2|  1|  1|  3|4|  1|  5|  5|4|  4|  5|  0|

大整数的乘法

  • 小学的方法:效率太低 O(n2)
  • 分治法:
    在这里插入图片描述
    X = A × 2n/2 + B
    Y = C × 2n/2 + D
    XY = (A × 2n/2 + B)(C × 2n/2 + D)
         =AC × 2n + (AD + CB) × 2n/2 + BD
    在这里插入图片描述
    实质上没有改进
    再次进行改进:
    XY = AC × 2n + (AD + CB) × 2n/2 + BD
         =AC × 2n + ((A - B)(D - C) + AC + BD) × 2n/2 + BD
    这样只需进行3次 n/2 位乘法
    在这里插入图片描述
    T(n) = O(nlog3) = O(n1.59) (有了较大的改进

如果将大整数分成更多段,用更复杂的方式把它们组合起来,将有可能得到更优的算法

Strassen矩阵乘法

在这里插入图片描述
易知,时间复杂度为 O(n3)
分治法:

  • 将矩阵A、B和C中每一矩阵都分成4个大小相等的子矩阵,则 C = AB 可写为:
    在这里插入图片描述
    由此可得:
    在这里插入图片描述
    在这里插入图片描述
    实际复杂度还是没有变,仍然为 O(n3)

  • 为了降低时间复杂度,要减少乘法的次数
    在这里插入图片描述
    这样,复杂度得到了改进
    在这里插入图片描述

这篇关于分治(详解残缺棋盘 —— Java代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/311100

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

SQL BETWEEN 语句的基本用法详解

《SQLBETWEEN语句的基本用法详解》SQLBETWEEN语句是一个用于在SQL查询中指定查询条件的重要工具,它允许用户指定一个范围,用于筛选符合特定条件的记录,本文将详细介绍BETWEEN语... 目录概述BETWEEN 语句的基本用法BETWEEN 语句的示例示例 1:查询年龄在 20 到 30 岁

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器