[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式

本文主要是介绍[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MA 均线时最基本的技术指标,也是最简单,最不常用的(通常使用EMA、SMA)。

以下用两种不同的计算方法和两种不同的画图方法进行展示和说明。

MA 均线指标公式

MA (N)=(C1 +C2 +C3 +…+C N )/N

目录

  • 方式一
    • 1.SQL 直接查询均值
    • 2.使用 pyplot 进行绘图
    • 3.使用 Grafana 绘图
  • 方式二
    • 1.使用 Python 计算 MA
    • 2.使用 pyplot 进行绘图
  • 高能预警
  • 题外话

方式一

1.SQL 直接查询均值

TDengine 提供了很多时间相关函数,其中有个窗口函数 interval 可以进行滑动时间窗口的运算。函数说明见官方文档。

直接查询 2022-08-01 到 2022-10-01 时间段的 5 日 MA,SQL 如下:

selectma
from(select_wend as ts,avg(close) as mafrom(select_wstart,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) // 获取每日最后一分钟的收盘价作为当日收盘价) interval(5d) sliding(1d) //计算5日的收盘价平均值,滑动窗口为1天。)
wherets >= "2022-08-01" and ts <= "2022-10-01" //选取指定时间范围内数据

数据结构见之前的文章《[量化投资-学习笔记001]Python+TDengine从零开始搭建量化分析平台-数据存储》

Python 代码如下:

def request_get(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")datalist= []for i in range(len(data)):datalist.append(float(data[i][0]))return datalistdef get_ma(sql):ma = []rt = request_post(tdurl,sql,username,password)if check_return(rt) == 'error':print(rt)else:ma = request_get(rt)return ma

2.使用 pyplot 进行绘图

if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.legend()plt.grid()plt.show()

在这里插入图片描述

3.使用 Grafana 绘图

Grafana 可以直接访问 TDengine 数据库,我们直接添加一张时间序列图即可。
SQL 如下:

select ts,ma from (select _wend as ts,avg(close) as ma from (select _wstart,last(close) as close from trade_data_a.tdata where fcode="000001" interval(1d)) interval(5d) sliding(1d) )where ts>=$from and ts<=$to

在这里插入图片描述

注意:
Grafana 中的时间序列图必须带上时间。
时间范围可以使用 Grafana 自带函数 $from 和 $to,方便图形的缩放。

方式二

1.使用 Python 计算 MA

通过查询 TDengine 数据库获取原数据,然后使用 Python 计算 MA。
原始数据获取:

selectclose
from(select_wstart as ts,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) //获取每日收盘价)
wherets >= "2022-08-01" and ts <= "2022-10-01" //获取指定日期收盘价

这里计算 MA 时取巧,使用了 numpy 的均值函数。

def calc_ma(days,ma):ma_n = []days = days-1for i in range(len(ma)):if i >= days:ma_n.append(np.mean(ma[i-days:i+1]))else:if i == 0:ma_n.append(ma[i])else:ma_n.append(np.mean(ma[:i]))return ma_n

注意:
以上对初始的几个值按实际个数进行了平均,因此结果与方式一存在偏差。

2.使用 pyplot 进行绘图

if __name__ == '__main__':ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()

在这里插入图片描述

高能预警

从图形上来看,不管哪种方式,展示出的图形都相差不大,但为了对比,我们讲方式一和方式二的图形放到一起进行对比。

if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()

在这里插入图片描述

WTF!!

大坑出现了!!

为何图形形状差不多,但是数据却对不上??

问题就出在 TDengine 的滑动时间窗口函数上面,这个函数是按照时间维度顺序滑动的,默认时间是连续的。

但是
交易时间是不连续的!
交易时间是不连续的!
交易时间是不连续的!

这就造成了方式一中不仅相同时间段的数据条数多了,数值计算也错了。

所以,TDengine 的时间窗口函数对于这种不连续的时间真是无能为力,只能老老实实自己进行计算了。

但如果只是想看看趋势什么的,不考虑精确性,用 TDengine+Grafana 还是挺方便的。

题外话

MA 是技术分析指标。对于技术分析有时模糊的准确比精准的错误更重要。
我之前有个课后作业对技术分析的多解性做了说明,有兴趣的同学可以看两眼:https://www.zhihu.com/question/34886985/answer/3264087568

技术分析除了具有多解性,还具有反身性,这就造成了技术分析的误差非常大,而且越追求精准,误差越大。

这篇关于[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310918

相关文章

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后