[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式

本文主要是介绍[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MA 均线时最基本的技术指标,也是最简单,最不常用的(通常使用EMA、SMA)。

以下用两种不同的计算方法和两种不同的画图方法进行展示和说明。

MA 均线指标公式

MA (N)=(C1 +C2 +C3 +…+C N )/N

目录

  • 方式一
    • 1.SQL 直接查询均值
    • 2.使用 pyplot 进行绘图
    • 3.使用 Grafana 绘图
  • 方式二
    • 1.使用 Python 计算 MA
    • 2.使用 pyplot 进行绘图
  • 高能预警
  • 题外话

方式一

1.SQL 直接查询均值

TDengine 提供了很多时间相关函数,其中有个窗口函数 interval 可以进行滑动时间窗口的运算。函数说明见官方文档。

直接查询 2022-08-01 到 2022-10-01 时间段的 5 日 MA,SQL 如下:

selectma
from(select_wend as ts,avg(close) as mafrom(select_wstart,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) // 获取每日最后一分钟的收盘价作为当日收盘价) interval(5d) sliding(1d) //计算5日的收盘价平均值,滑动窗口为1天。)
wherets >= "2022-08-01" and ts <= "2022-10-01" //选取指定时间范围内数据

数据结构见之前的文章《[量化投资-学习笔记001]Python+TDengine从零开始搭建量化分析平台-数据存储》

Python 代码如下:

def request_get(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")datalist= []for i in range(len(data)):datalist.append(float(data[i][0]))return datalistdef get_ma(sql):ma = []rt = request_post(tdurl,sql,username,password)if check_return(rt) == 'error':print(rt)else:ma = request_get(rt)return ma

2.使用 pyplot 进行绘图

if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.legend()plt.grid()plt.show()

在这里插入图片描述

3.使用 Grafana 绘图

Grafana 可以直接访问 TDengine 数据库,我们直接添加一张时间序列图即可。
SQL 如下:

select ts,ma from (select _wend as ts,avg(close) as ma from (select _wstart,last(close) as close from trade_data_a.tdata where fcode="000001" interval(1d)) interval(5d) sliding(1d) )where ts>=$from and ts<=$to

在这里插入图片描述

注意:
Grafana 中的时间序列图必须带上时间。
时间范围可以使用 Grafana 自带函数 $from 和 $to,方便图形的缩放。

方式二

1.使用 Python 计算 MA

通过查询 TDengine 数据库获取原数据,然后使用 Python 计算 MA。
原始数据获取:

selectclose
from(select_wstart as ts,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) //获取每日收盘价)
wherets >= "2022-08-01" and ts <= "2022-10-01" //获取指定日期收盘价

这里计算 MA 时取巧,使用了 numpy 的均值函数。

def calc_ma(days,ma):ma_n = []days = days-1for i in range(len(ma)):if i >= days:ma_n.append(np.mean(ma[i-days:i+1]))else:if i == 0:ma_n.append(ma[i])else:ma_n.append(np.mean(ma[:i]))return ma_n

注意:
以上对初始的几个值按实际个数进行了平均,因此结果与方式一存在偏差。

2.使用 pyplot 进行绘图

if __name__ == '__main__':ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()

在这里插入图片描述

高能预警

从图形上来看,不管哪种方式,展示出的图形都相差不大,但为了对比,我们讲方式一和方式二的图形放到一起进行对比。

if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()

在这里插入图片描述

WTF!!

大坑出现了!!

为何图形形状差不多,但是数据却对不上??

问题就出在 TDengine 的滑动时间窗口函数上面,这个函数是按照时间维度顺序滑动的,默认时间是连续的。

但是
交易时间是不连续的!
交易时间是不连续的!
交易时间是不连续的!

这就造成了方式一中不仅相同时间段的数据条数多了,数值计算也错了。

所以,TDengine 的时间窗口函数对于这种不连续的时间真是无能为力,只能老老实实自己进行计算了。

但如果只是想看看趋势什么的,不考虑精确性,用 TDengine+Grafana 还是挺方便的。

题外话

MA 是技术分析指标。对于技术分析有时模糊的准确比精准的错误更重要。
我之前有个课后作业对技术分析的多解性做了说明,有兴趣的同学可以看两眼:https://www.zhihu.com/question/34886985/answer/3264087568

技术分析除了具有多解性,还具有反身性,这就造成了技术分析的误差非常大,而且越追求精准,误差越大。

这篇关于[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310918

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF