[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式

本文主要是介绍[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MA 均线时最基本的技术指标,也是最简单,最不常用的(通常使用EMA、SMA)。

以下用两种不同的计算方法和两种不同的画图方法进行展示和说明。

MA 均线指标公式

MA (N)=(C1 +C2 +C3 +…+C N )/N

目录

  • 方式一
    • 1.SQL 直接查询均值
    • 2.使用 pyplot 进行绘图
    • 3.使用 Grafana 绘图
  • 方式二
    • 1.使用 Python 计算 MA
    • 2.使用 pyplot 进行绘图
  • 高能预警
  • 题外话

方式一

1.SQL 直接查询均值

TDengine 提供了很多时间相关函数,其中有个窗口函数 interval 可以进行滑动时间窗口的运算。函数说明见官方文档。

直接查询 2022-08-01 到 2022-10-01 时间段的 5 日 MA,SQL 如下:

selectma
from(select_wend as ts,avg(close) as mafrom(select_wstart,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) // 获取每日最后一分钟的收盘价作为当日收盘价) interval(5d) sliding(1d) //计算5日的收盘价平均值,滑动窗口为1天。)
wherets >= "2022-08-01" and ts <= "2022-10-01" //选取指定时间范围内数据

数据结构见之前的文章《[量化投资-学习笔记001]Python+TDengine从零开始搭建量化分析平台-数据存储》

Python 代码如下:

def request_get(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")datalist= []for i in range(len(data)):datalist.append(float(data[i][0]))return datalistdef get_ma(sql):ma = []rt = request_post(tdurl,sql,username,password)if check_return(rt) == 'error':print(rt)else:ma = request_get(rt)return ma

2.使用 pyplot 进行绘图

if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.legend()plt.grid()plt.show()

在这里插入图片描述

3.使用 Grafana 绘图

Grafana 可以直接访问 TDengine 数据库,我们直接添加一张时间序列图即可。
SQL 如下:

select ts,ma from (select _wend as ts,avg(close) as ma from (select _wstart,last(close) as close from trade_data_a.tdata where fcode="000001" interval(1d)) interval(5d) sliding(1d) )where ts>=$from and ts<=$to

在这里插入图片描述

注意:
Grafana 中的时间序列图必须带上时间。
时间范围可以使用 Grafana 自带函数 $from 和 $to,方便图形的缩放。

方式二

1.使用 Python 计算 MA

通过查询 TDengine 数据库获取原数据,然后使用 Python 计算 MA。
原始数据获取:

selectclose
from(select_wstart as ts,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) //获取每日收盘价)
wherets >= "2022-08-01" and ts <= "2022-10-01" //获取指定日期收盘价

这里计算 MA 时取巧,使用了 numpy 的均值函数。

def calc_ma(days,ma):ma_n = []days = days-1for i in range(len(ma)):if i >= days:ma_n.append(np.mean(ma[i-days:i+1]))else:if i == 0:ma_n.append(ma[i])else:ma_n.append(np.mean(ma[:i]))return ma_n

注意:
以上对初始的几个值按实际个数进行了平均,因此结果与方式一存在偏差。

2.使用 pyplot 进行绘图

if __name__ == '__main__':ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()

在这里插入图片描述

高能预警

从图形上来看,不管哪种方式,展示出的图形都相差不大,但为了对比,我们讲方式一和方式二的图形放到一起进行对比。

if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()

在这里插入图片描述

WTF!!

大坑出现了!!

为何图形形状差不多,但是数据却对不上??

问题就出在 TDengine 的滑动时间窗口函数上面,这个函数是按照时间维度顺序滑动的,默认时间是连续的。

但是
交易时间是不连续的!
交易时间是不连续的!
交易时间是不连续的!

这就造成了方式一中不仅相同时间段的数据条数多了,数值计算也错了。

所以,TDengine 的时间窗口函数对于这种不连续的时间真是无能为力,只能老老实实自己进行计算了。

但如果只是想看看趋势什么的,不考虑精确性,用 TDengine+Grafana 还是挺方便的。

题外话

MA 是技术分析指标。对于技术分析有时模糊的准确比精准的错误更重要。
我之前有个课后作业对技术分析的多解性做了说明,有兴趣的同学可以看两眼:https://www.zhihu.com/question/34886985/answer/3264087568

技术分析除了具有多解性,还具有反身性,这就造成了技术分析的误差非常大,而且越追求精准,误差越大。

这篇关于[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310918

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使