[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式

本文主要是介绍[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MA 均线时最基本的技术指标,也是最简单,最不常用的(通常使用EMA、SMA)。

以下用两种不同的计算方法和两种不同的画图方法进行展示和说明。

MA 均线指标公式

MA (N)=(C1 +C2 +C3 +…+C N )/N

目录

  • 方式一
    • 1.SQL 直接查询均值
    • 2.使用 pyplot 进行绘图
    • 3.使用 Grafana 绘图
  • 方式二
    • 1.使用 Python 计算 MA
    • 2.使用 pyplot 进行绘图
  • 高能预警
  • 题外话

方式一

1.SQL 直接查询均值

TDengine 提供了很多时间相关函数,其中有个窗口函数 interval 可以进行滑动时间窗口的运算。函数说明见官方文档。

直接查询 2022-08-01 到 2022-10-01 时间段的 5 日 MA,SQL 如下:

selectma
from(select_wend as ts,avg(close) as mafrom(select_wstart,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) // 获取每日最后一分钟的收盘价作为当日收盘价) interval(5d) sliding(1d) //计算5日的收盘价平均值,滑动窗口为1天。)
wherets >= "2022-08-01" and ts <= "2022-10-01" //选取指定时间范围内数据

数据结构见之前的文章《[量化投资-学习笔记001]Python+TDengine从零开始搭建量化分析平台-数据存储》

Python 代码如下:

def request_get(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")datalist= []for i in range(len(data)):datalist.append(float(data[i][0]))return datalistdef get_ma(sql):ma = []rt = request_post(tdurl,sql,username,password)if check_return(rt) == 'error':print(rt)else:ma = request_get(rt)return ma

2.使用 pyplot 进行绘图

if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.legend()plt.grid()plt.show()

在这里插入图片描述

3.使用 Grafana 绘图

Grafana 可以直接访问 TDengine 数据库,我们直接添加一张时间序列图即可。
SQL 如下:

select ts,ma from (select _wend as ts,avg(close) as ma from (select _wstart,last(close) as close from trade_data_a.tdata where fcode="000001" interval(1d)) interval(5d) sliding(1d) )where ts>=$from and ts<=$to

在这里插入图片描述

注意:
Grafana 中的时间序列图必须带上时间。
时间范围可以使用 Grafana 自带函数 $from 和 $to,方便图形的缩放。

方式二

1.使用 Python 计算 MA

通过查询 TDengine 数据库获取原数据,然后使用 Python 计算 MA。
原始数据获取:

selectclose
from(select_wstart as ts,last(close) as closefromtrade_data_a.tdatawherefcode = "000001" interval(1d) //获取每日收盘价)
wherets >= "2022-08-01" and ts <= "2022-10-01" //获取指定日期收盘价

这里计算 MA 时取巧,使用了 numpy 的均值函数。

def calc_ma(days,ma):ma_n = []days = days-1for i in range(len(ma)):if i >= days:ma_n.append(np.mean(ma[i-days:i+1]))else:if i == 0:ma_n.append(ma[i])else:ma_n.append(np.mean(ma[:i]))return ma_n

注意:
以上对初始的几个值按实际个数进行了平均,因此结果与方式一存在偏差。

2.使用 pyplot 进行绘图

if __name__ == '__main__':ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()

在这里插入图片描述

高能预警

从图形上来看,不管哪种方式,展示出的图形都相差不大,但为了对比,我们讲方式一和方式二的图形放到一起进行对比。

if __name__ == '__main__':ma5 = get_ma(ma5_sql)ma10 = get_ma(ma10_sql)ma5_n = calc_ma(5,get_ma(sql_ma))ma10_n = calc_ma(10,get_ma(sql_ma))plt.title("MA")plt.plot(ma5,'b',linewidth=1.0,label='MA5')plt.plot(ma10,'y',linewidth=1.0,label='MA10')plt.plot(ma5_n,'g',linewidth=1.0,label='MA5_N')plt.plot(ma10_n,'r',linewidth=1.0,label='MA10_N')plt.legend()plt.grid()plt.show()

在这里插入图片描述

WTF!!

大坑出现了!!

为何图形形状差不多,但是数据却对不上??

问题就出在 TDengine 的滑动时间窗口函数上面,这个函数是按照时间维度顺序滑动的,默认时间是连续的。

但是
交易时间是不连续的!
交易时间是不连续的!
交易时间是不连续的!

这就造成了方式一中不仅相同时间段的数据条数多了,数值计算也错了。

所以,TDengine 的时间窗口函数对于这种不连续的时间真是无能为力,只能老老实实自己进行计算了。

但如果只是想看看趋势什么的,不考虑精确性,用 TDengine+Grafana 还是挺方便的。

题外话

MA 是技术分析指标。对于技术分析有时模糊的准确比精准的错误更重要。
我之前有个课后作业对技术分析的多解性做了说明,有兴趣的同学可以看两眼:https://www.zhihu.com/question/34886985/answer/3264087568

技术分析除了具有多解性,还具有反身性,这就造成了技术分析的误差非常大,而且越追求精准,误差越大。

这篇关于[量化投资-学习笔记002]Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310918

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D