凸优化基础之计算几何、凸集、凸函数、凸规划

2023-10-30 21:00

本文主要是介绍凸优化基础之计算几何、凸集、凸函数、凸规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、计算几何
    • 1.什么是计算几何
    • 2.计算几何理论中过两点的一条直线的表达式,是如何描述的?
  • 二、凸集
    • 1.什么是凸集
    • 2.如何表达三维空间中的一个平面
    • 3.如何表达超平面
    • 4.什么是凸函数及如何判别
    • 5.什么是凸规划及如何判别

一、计算几何

1.什么是计算几何

计算几何是计算机理论科学的一个重要分支.自20世纪70年代末从算法设计与分析中独立出来起,不到30年,该学科已经有了巨大的发展,不仅产生了一系列重要的理论成果,也在众多实际领域中得到了广泛的应用.
计算几何基本概念和常用算法包括如下内容:
矢量的概念
矢量加减法
矢量叉积
折线段的拐向判断
判断点是否在线段上
判断两线段是否相交
判断线段和直线是否相交
判断矩形是否包含点
判断线段、折线、多边形是否在矩形中
判断矩形是否在矩形中
判断圆是否在矩形中
判断点是否在多边形中
判断线段是否在多边形内
判断折线是否在多边形内
判断多边形是否在多边形内
判断矩形是否在多边形内
判断圆是否在多边形内
判断点是否在圆内
判断线段、折线、矩形、多边形是否在圆内
判断圆是否在圆内
计算点到线段的最近点
计算点到折线、矩形、多边形的最近点
计算点到圆的最近距离及交点坐标
计算两条共线的线段的交点
计算线段或直线与线段的交点
求线段或直线与折线、矩形、多边形的交点
求线段或直线与圆的交点
凸包的概念
凸包的求法

想要深入了解这些内容可参考这个博客

2.计算几何理论中过两点的一条直线的表达式,是如何描述的?

设点为Q,线段为P1P2 ,判断点Q在该线段上的依据是:( Q - P1 ) × ( P2 - P1 ) = 0 且 Q 在以 P1,P2为对角顶点的矩形内。前者保证Q点在直线P1P2上,后者是保证Q点不在线段P1P2的延长线或反向延长线上,对于这一步骤的判断可以用以下过程实现:

ON-SEGMENT(pi,pj,pk)

if min(xi,xj) <= xk <= max(xi,xj) and min(yi,yj) <= yk <= max(yi,yj)

then return true;

else return false;

特别要注意的是,由于需要考虑水平线段和垂直线段两种特殊情况,min(xi,xj)<=xk<=max(xi,xj)和min(yi,yj)<=yk<=max(yi,yj)两个条件必须同时满足才能返回真值。

二、凸集

1.什么是凸集

集合C中任两点之间的点仍在C中,称C为凸集。
即x.x∈C,成+(1-0)xq∈C, 其中θ∈[:1]b 显然仿射集是凸集。
凸组合 ∑ θ i X i \sum^{}_{}\theta_iX_i θiXi,其中 ∑ θ i \sum^{}_{}θ_i θi,的值为1。
集合C是凸集<=>C包含其任意点的凸组合
凸包,C为任意集合,
c n o v C = ∑ θ i X i ∣ X i ∈ C z , θ i ≥ 0 , θ i = 1 cnov C= {\sum^{}_{}\theta_iX_i |X_i\in C_z, \theta_i \geq0 ,\theta_i=1 } cnovC=θiXiXiCz,θi0,θi=1
凸包是包含集合C的最小的凸集

直线的表示: y = θ x 1 + ( 1 − θ ) x 2 , θ ∈ R , y= \theta x_1 + (1-\theta)x_2, \theta \in R, y=θx1+(1θ)x2,θR,
直线是仿射集,而仿射集一定是凸集,所以直线是凸集。

2.如何表达三维空间中的一个平面

三维空间中的平面由两个量确定:
① 一个法向量(垂直于该平面的向量)
② 一个已知点(位于该平面上的一个点)
平面法向量为: n → = { 1 2 3 } ⊤ (3) \overrightarrow{n}= \begin{Bmatrix} 1 & 2 & 3 \end{Bmatrix} \tag{3}\top n ={1<

这篇关于凸优化基础之计算几何、凸集、凸函数、凸规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310577

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4