计算方法的稳定性 | 误差来源之舍入误差 | 数值计算基本原则

本文主要是介绍计算方法的稳定性 | 误差来源之舍入误差 | 数值计算基本原则,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算方法的稳定性

在实际数值计算过程中,由于不可避免地存在和不断产生各种误差,因此计算结果不是绝对精确的。如果误差使得计算结果和实际情况有较大差别或者出现错误的结果,则数值 计算便失去了价值和意义。因此,分析数值计算过程中误差的来源和传递规律,设法控制和减小误差。

1.误差的来源

来源:固有误差(模型误差、观测误差)和计算误差(截断误差、舍入误差)

舍入误差

设s是r进制数,p是r进制正负整数或零,则形如
x = s × r p x=s\times r^p x=s×rp
并满足
− 1 < s < 1 -1<s<1 1<s<1
的数x,称为r进制浮点数,且s和p分别称为浮点数的尾数和阶数。

任何一种计算机只能用有限的位数来表示浮点数的尾数和阶数。设
− m ≤ p ≤ M -m\leq p\leq M mpM
其中 m , M m,M m,M为正整数,它们主要由计算机用多少位数来表示阶数而决定。如果尾数的小数尾数为t(t一般比m,M的位数大若干倍),则计算机的数系由一切阶数满足 − 1 < s < 1 -1<s<1 1<s<1的t位r进制浮点数的集合F组成。可见,在计算机数系中,数的个数有限,数系中的每一个数都是有理数,且阶数相等的数以相等的距离分布在数轴的某一段上。

由于计算机数系是有限集,不仅无理数 e , π e,\pi e,π等不属于计算机数系,而且一些有理数(如 1 / 3 1/3 1/3)也属于计算机数系,因此常常用计算机数系中和它们接近的数来表示它们。同时,在利用计算机进行计算时,由于字长限制,参与计算的数的长度也是有限的,而由此产生的误差,称为舍入误差

例1

浮点数F的集合可以用以下4个参数来描述:
{ F } ≡ { β , t , L , U } \{F\}\equiv \{\beta,t,L,U\} {F}{β,t,L,U}
其中, β \beta β为基数,t是精度参数,整数L与U是阶码E(范围)的下限和上限 [ L , U ] [L,U] [L,U]

这样,F中的每一个浮点数x的值可表示为:
x = ± ( d 1 β + d 2 β 2 + ⋯ + d t β t ) ⋅ β E x=\pm(\frac{d_1}{\beta}+\frac{d_2}{\beta^2}+\cdots+\frac{d_t}{\beta^t})·\beta^E x=±(βd1+β2d2++βtdt)βE
式中的整数 d 1 , ⋯ , d t d_1,\cdots,d_t d1,dt满足 0 ≤ d t ≤ β − 1 , ( i = 1 , ⋯ , t ) 0\leq d_t\leq \beta-1,(i=1,\cdots,t) 0dtβ1,(i=1,,t),同时又 L ≤ E ≤ U L\leq E\leq U LEU(E是整数)。

如果对F中每个非零的x,有 d 1 ≠ 0 d_1\neq 0 d1=0,则称浮点数系F为规格化浮点数系。括号中的部分 f = ( d 1 / β + d 2 / β 2 + ⋯ + d t / β t ) f=(d_1/\beta+d_2/\beta^2+\cdots +d_t/\beta^t) f=(d1/β+d2/β2++dt/βt)称为尾数。我们知道,一个实数常用【整数+小数点+尾数】的形式表示,它们在计算机中对应的浮点数 [ β t ⋅ f ] [\beta^t·f] [βtf]则常用某种整数表示方式(例如以原码、反码或补码的形式)存储。

例2:求十进制数系与计算机采用的二进制数系之间的差别

:以在许多算法中常被选作步长的十进制0.1为例。在 β = 2 \beta=2 β=2或者为2的幂的浮点数系中,10个0.1的步长并不刚好等于一个1.0的步长。事实上,当把 1 10 \frac{1}{10} 101转换成为以 1 2 \frac{1}{2} 21为底的幂的有限项展开式时,有:
1 10 = 0 2 1 + 0 2 2 + 0 2 3 + 1 2 4 + 1 2 5 + 0 2 6 + 0 2 7 + ⋯ \frac{1}{10}=\frac{0}{2^1}+\frac{0}{2^2}+\frac{0}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{0}{2^6}+\frac{0}{2^7}+\cdots 101=210+220+230+241+251+260+270+
用下标表示数基,如果 β = 2 \beta=2 β=2,则有:
( 0.1 ) = ( 0.000110011001100 ⋯ ) z (0.1)=(0.000110011001100\cdots)_z (0.1)=(0.000110011001100)z
如果 β = 8 \beta=8 β=8,则
( 0.1 ) = ( 0.063146314 ⋯ ) s (0.1)=(0.063146314\cdots)_s (0.1)=(0.063146314)s
由于字长限制,等号右边的值只能取7位。很明显,当把10个这样的数相加时,其结果并不正好是1.0。这就是舍入误差造成的。所以,在计算机上进行的浮点运算(四则运算)只能是近似计算。

观测误差和数据的舍入误差虽然来源不同,但对计算结果的影响完全一样。在数值计算中涉及的误差一般指舍入误差(包含初始数据误差)和截断误差。

2 计算方法的稳定性

计算方法的稳定性是指数值计算中是否稳定的问题。在数值计算过程中,数值解是逐步计算出来的。由于计算机的字长有限,每一步计算都有误差存在,且前一步的舍入误差必然要影响下一步的近似解。如果运算序列的舍入误差不增长。误差的积累或传递对计算结果的影响是可控的,则该算法是数值稳定的,否则是数值不稳定的。

3. 数值计算的基本原则

评价一个数值计算方法优劣的标准:

  • 计算时间复杂度(运算次数或计算时间),包括收敛性问题
  • 计算空间复杂度(占用计算机存储空间)
  • 计算结果精确度(包括稳定性问题)

构造和选择一个好的计算方法:

  1. 避免两个相近的数相减

在数值计算过程中,两个相近的数相减,会严重损失有效数字,从而使相对误差变大。

如果两个相近的数相减,常采用变换的公式进行计算。如果计算公式不能改变,则采用增加有效数字位数的方法。

  1. 避免使用绝对值很小的数作分母

  2. 两个相差很大的数进行运算时,防止大数“吃掉”小数

  3. 简化计算步骤,减少运算次数

这篇关于计算方法的稳定性 | 误差来源之舍入误差 | 数值计算基本原则的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310442

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

mapstruct中的@Mapper注解的基本用法

《mapstruct中的@Mapper注解的基本用法》在MapStruct中,@Mapper注解是核心注解之一,用于标记一个接口或抽象类为MapStruct的映射器(Mapper),本文给大家介绍ma... 目录1. 基本用法2. 常用属性3. 高级用法4. 注意事项5. 总结6. 编译异常处理在MapSt

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

git stash命令基本用法详解

《gitstash命令基本用法详解》gitstash是Git中一个非常有用的命令,它可以临时保存当前工作区的修改,让你可以切换到其他分支或者处理其他任务,而不需要提交这些还未完成的修改,这篇文章主要... 目录一、基本用法1. 保存当前修改(包括暂存区和工作区的内容)2. 查看保存了哪些 stash3. 恢

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

C#继承之里氏替换原则分析

《C#继承之里氏替换原则分析》:本文主要介绍C#继承之里氏替换原则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#里氏替换原则一.概念二.语法表现三.类型检查与转换总结C#里氏替换原则一.概念里氏替换原则是面向对象设计的基本原则之一:核心思想:所有引py

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti