python 实现工业生成批号的旋转

2023-10-30 17:41

本文主要是介绍python 实现工业生成批号的旋转,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题提出:流水线的旋转批号  进行识别 ,识别的基础就是对图片进行旋转到上方,这样有助于ocR识别

面对这个问题,提出的思路是 提出一个正确的图案,使用sift匹配 输入图案与模版的特征图,生成匹配好的特征对,然后根据特征独取出坐标 ,对坐标进行欧式聚类计算,形成n个距离,使用方差来判定是否正确匹配

为了更好的处理特征对,对图片 形态学处理,找出字符的外接矩形框 

最后截图 并保存,

下面给出部分主要代码:

1、图片输入 并计算sift特征

sift = cv2.xfeatures2d.SURF_create()kp1, des1 = sift.detectAndCompute(img1_gray, None)kp2, des2 = sift.detectAndCompute(imgRot, None)# BFmatcher with default parmsbf = cv2.BFMatcher(cv2.NORM_L2)matches = bf.knnMatch(des1, des2, k = 2) goodMatch = []                 #利用sift算子 进行筛选匹配for m,n in matches:if m.distance < 0.6*n.distance:#可以调节的参数  特征点匹配约束  数字越小 效果越精确goodMatch.append(m)p1 = [kpp.queryIdx for kpp in goodMatch]   #解析出 相似的一对 点的坐标p2 = [kpp.trainIdx for kpp in goodMatch]   post1 = np.int32([kp1[pp].pt for pp in p1])#    post2 = np.int32([kp2[pp].pt for pp in p2]) + (w1, 0)post2 = np.int32([kp2[pp].pt for pp in p2])list=[]for (x1, y1), (x2, y2) in zip(post1, post2):
#        print(x1,y1,x2,y2)p1=np.array([x1,y1])           #利用相似对应点 距离相同的原理,利用距离方差大小判断 是否旋转到合理的角度p2=np.array([x2 ,y2 ])p3=p2-p1p4=math.hypot(p3[0],p3[1])list.append(p4)listvar=np.var(list)ave=listvar/len(list)

2、其中不断旋转图片,使其符合筛选需要

le=imgRot.shape[1]l1=int(le/2-150)l2=int(le/2+150)imgR=imgRot[l1:l2,l1:l2]gray = cv2.cvtColor(imgR, cv2.COLOR_BGR2GRAY)(_, thresh) = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)closed = cv2.erode(thresh, None, iterations = 12)closed1=255-closed# find the contours in the thresholded image, then sort the contours# by their area, keeping only the largest onecnts = cv2.findContours(closed1.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)cnts = imutils.grab_contours(cnts)c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]# compute the rotated bounding box of the largest contourrect = cv2.minAreaRect(c)box_origin = cv2.cv.BoxPoints(rect) if imutils.is_cv2() else cv2.boxPoints(rect)box1 = np.int0(box_origin)cv2.drawContours(imgR, [box1], -1, (0,255,0), 3)cv2.imshow("Image", imgR)cv2.waitKey(0)

3、最终裁剪图片下面把涉及到的函数贴一下

def imagecrop(image,box):xs = [x[1] for x in box]ys = [x[0] for x in box]cropimage = image[min(xs):max(xs),min(ys):max(ys)] cv2.imwrite('cropimage2.png',cropimage)return cropimage
def Nrotate(angle,valuex,valuey,pointx,pointy):angle = (angle/180)*math.pivaluex = np.array(valuex)valuey = np.array(valuey)nRotatex = (valuex-pointx)*math.cos(angle) - (valuey-pointy)*math.sin(angle) + pointxnRotatey = (valuex-pointx)*math.sin(angle) + (valuey-pointy)*math.cos(angle) + pointyreturn (nRotatex, nRotatey)
#顺时针旋转
def Srotate(angle,valuex,valuey,pointx,pointy):angle = (angle/180)*math.pivaluex = np.array(valuex)valuey = np.array(valuey)sRotatex = (valuex-pointx)*math.cos(angle) + (valuey-pointy)*math.sin(angle) + pointxsRotatey = (valuey-pointy)*math.cos(angle) - (valuex-pointx)*math.sin(angle) + pointyreturn (sRotatex,sRotatey)
#将四个点做映射
def rotatecordiate(angle,rectboxs,pointx,pointy):output = []for rectbox in rectboxs:if angle>0:output.append(Srotate(angle,rectbox[0],rectbox[1],pointx,pointy))else:output.append(Nrotate(-angle,rectbox[0],rectbox[1],pointx,pointy))return outputdef rotate_bound_white_bg(image, angle):# grab the dimensions of the image and then determine the# center(h, w) = image.shape[:2](cX, cY) = (w // 2, h // 2)# grab the rotation matrix (applying the negative of the# angle to rotate clockwise), then grab the sine and cosine# (i.e., the rotation components of the matrix)# -angle位置参数为角度参数负值表示顺时针旋转; 1.0位置参数scale是调整尺寸比例(图像缩放参数),建议0.75M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)cos = np.abs(M[0, 0])sin = np.abs(M[0, 1]) # compute the new bounding dimensions of the imagenW = int((h * sin) + (w * cos))nH = int((h * cos) + (w * sin)) # adjust the rotation matrix to take into account translationM[0, 2] += (nW / 2) - cXM[1, 2] += (nH / 2) - cY # borderValue 缺失背景填充色彩,此处为白色,可自定义return cv2.warpAffine(image, M, (nW, nH),borderValue=(0,0,0))# borderValue 缺省,默认是黑色(0, 0 , 0)# return cv2.warpAffine(image, M, (nW, nH)) 

如果需要可以下载我的完成程序,交流请联系哦

完整代码https://download.csdn.net/download/weixin_44576543/12594632

 

 

 

这篇关于python 实现工业生成批号的旋转的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309567

相关文章

Flutter实现文字镂空效果的详细步骤

《Flutter实现文字镂空效果的详细步骤》:本文主要介绍如何使用Flutter实现文字镂空效果,包括创建基础应用结构、实现自定义绘制器、构建UI界面以及实现颜色选择按钮等步骤,并详细解析了混合模... 目录引言实现原理开始实现步骤1:创建基础应用结构步骤2:创建主屏幕步骤3:实现自定义绘制器步骤4:构建U

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Android实现定时任务的几种方式汇总(附源码)

《Android实现定时任务的几种方式汇总(附源码)》在Android应用中,定时任务(ScheduledTask)的需求几乎无处不在:从定时刷新数据、定时备份、定时推送通知,到夜间静默下载、循环执行... 目录一、项目介绍1. 背景与意义二、相关基础知识与系统约束三、方案一:Handler.postDel

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指