Fashion MNIST 图片重建与生成(VAE)

2023-10-30 16:50

本文主要是介绍Fashion MNIST 图片重建与生成(VAE),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面只能利用AE来重建图片,不是生成图片。这里利用VAE模型完成图片的重建与生成。

一、数据集的加载以及预处理

# 加载Fashion MNIST数据集
(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
# 归一化
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# 只需要通过图片数据即可构建数据集对象,不需要标签
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batches * 5).batch(batches)
# 构建测试集对象
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batches)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)

和AE一样这里只需要数据集的图片数据x,不需要标签y

二、网络模型的构建

输入为 Fashion MNIST 图片向量,经过 3 个全连接层后得到隐向量𝐳的均值与方差分别用两
个输出节点数为 20 的全连接层表示, FC2 的 20 个输出节点表示 20 个特征分布的均值向量
FC3 的 20 个输出节点表示 20 个特征分布的取log后的方差向量通过Reparameterization Trick 采样获得长度为 20 的隐向量𝐳,并通过 FC4 和 FC5 重建出样本图片

class VAE(keras.Model):def __init__(self):super(VAE, self).__init__()# Encodersself.fc1 = layers.Dense(128, activation=tf.nn.relu)self.fc2 = layers.Dense(z_dim)  # 均值self.fc3 = layers.Dense(z_dim)  # 方差# Decodersself.f4 = layers.Dense(128, activation=tf.nn.relu)self.f5 = layers.Dense(784)def encoder(self, x):h = self.fc1(x)# 均值mu = self.fc2(h)# 方差log_var = self.fc3(h)return mu, log_vardef decoder(self, z):out = self.f4(z)out = self.f5(out)return out# 参数化def reparameterize(self, mu, log_var):esp = tf.random.normal(log_var.shape)std = tf.exp(log_var * 0.5)z = mu + std * espreturn zdef call(self, inputs, training):# [b,784] -> [b, z_dim],[b,z_dim]mu, log_var = self.encoder(inputs)# reparameterization tickz = self.reparameterize(mu, log_var)# --> [b, 784]x_hat = self.decoder(z)return x_hat, mu, log_var

Encoder 的输入先通过共享层 FC1,然后分别通过 FC2 与 FC3 网络,获得隐向量分布的均值向量与方差的log向量值Decoder 接受采样后的隐向量𝐳,并解码为图片输出。
 

在 VAE 的前向计算过程中,首先通过编码器获得输入的隐向量𝐳的分布,然后利用Reparameterization Trick 实现的 reparameterize 函数采样获得隐向量𝐳,Reparameterize 函数接受均值与方差参数,并从正态分布𝒩(0, 𝐼)中采样获得𝜀,通过z = 𝜇 + 𝜎 ⊙ 𝜀方式返回采样隐向量, 最后通过解码器即可恢复重建的图片向量。 

Reparameterization Trick原因:编码器输出正态分布的均值𝜇和方差𝜎2,解码器的输入采样自𝒩(𝜇, 𝜎2)。由于采样操作的存在,导致梯度传播是不连续的,无法通过梯度下降算法端到端式地训练 VAE 网络。

它通过z = u + \sigma \odot \varepsilon方式采样隐变量z,\frac{\partial z}{\partial u}\frac{\partial z}{\partial \sigma }是连续可导的,从而将梯度传播连接起来

三、网络装配与训练

网络模型建立以后,给网络选择一定的优化器,设置学习率,就可以进行模型训练。

model = VAE()
model.build(input_shape=(4, 784))
model.summary()optimizer = optimizers.Adam(lr=1e-3)for epoch in range(100):for step, x in enumerate(train_db):# [b,28,28] -> [b,784]x = tf.reshape(x, [-1, 784])# 构建梯度记录器with tf.GradientTape() as tape:# 前向计算获得重建的图片x_rec_logits, mu, log_var = model(x)   # call函数返回值# x 与 重建的 x :重建图片与输入之间的损失函数rec_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=x, logits=x_rec_logits)rec_loss = tf.reduce_sum(rec_loss) / x.shape[0]# compute kl divergence散度  (mu, var) ~ N (0, 1) 并且p(z) ~ (0, 1)kl_div = -0.5*(log_var+1-mu**2-tf.exp(log_var))kl_div = tf.reduce_sum(kl_div) / x.shape[0]loss = rec_loss + 1.*kl_div  # 损失函数 = 自编码器重建误差函数 + KL散度grads = tape.gradient(loss, model.trainable_variables)optimizer.apply_gradients(zip(grads, model.trainable_variables))if step % 100 == 0:print(epoch, step, 'kl_div:', float(kl_div),'rec loss:',float(rec_loss))

在VAE模型中代价函数:\pounds (\theta ,\phi ) = -\mathbb{D}_{KL}(q_{\phi }(z|x)||p(z)) + \mathbb{E}_{z-q}[logp_{\theta }(x|z)]

 当𝑞 (z |𝑥)和𝑝(z )都假设为正态分布时:\mathbb{D_{KL}}(q_{\phi }(z|x)||p(z)) = log(\frac{\sigma _{2}}{\sigma _{1}}) + \frac{\sigma _{1}^{2} + (u_{1}-u_{2})^2} {2\sigma _{2}^{2}}-\frac{1}{2}

当𝑞 ( |𝑥)为正态分布𝒩(𝜇1, 𝜎1), 𝑝( )为正态分布𝒩(0,1)时,即𝜇2 = 0, 𝜎2 =1,此时
\mathbb{D}_{KL}(q_{\phi }(z|x)||p(z)) = -log\sigma_{1} + 0.5\sigma _{1}^{2} + 0.5u_{1}^{2} - 0.5

 而 max\mathbb{E}_{zq}[logp_{\theta }(x|z)],该项可以基于自编码器中的重建误差函数实现

所以,损失函数 = 自编码器重建误差函数 + KL散度

四、测试

图片生成只利用到解码器网络,首先从先验分布𝒩(0, 𝐼)中采样获得隐向量,再通过解码器获得图片向量,最后 Reshape 为图片矩阵。

      # 生成图片,从正太分布随机采样zz = tf.random.normal((batches, z_dim))logits = model.decoder(z)x_hat = tf.sigmoid(logits)x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() * 255.x_hat = x_hat.astype(np.uint8)save_image(x_hat, 'vae_images/sampled_epoch%d.png' % epoch)# 重建图片,从测试集中采用图片x = next(iter(test_db))x = tf.reshape(x, [-1, 784])x_hat_logits, _, _ = model(x)  # call返回值x_hat = tf.sigmoid(x_hat_logits)x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() * 255.x_hat = x_hat.astype(np.uint8)save_image(x_hat, 'vae_images/rec_epoch%d.png' % epoch)

结果:

图片重建的效果是要略好于图片生成的,这也说明了图片生成是更为复杂的任务, VAE 模型虽然具有图片生成的能力,但是生成的效果仍然不够优秀,人眼还是能够较轻松地分辨出机器生成的和真实的图片样本

五、程序

# -*- codeing = utf-8 -*-
# @Time : 12:03
# @Author:Paranipd
# @File : VAE_test.py
# @Software:PyCharmimport os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from PIL import Image
from matplotlib import pyplot as plt
from tensorflow.keras import datasets, Sequential, layers, metrics, optimizers, lossestf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2')def save_image(imgs, name):# 创建 280x280 大小图片阵列new_im = Image.new('L', (280, 280))index = 0for i in range(0, 280, 28):  # 10 行图片阵列for j in range(0, 280, 28):  # 10 列图片阵列im = imgs[index]im = Image.fromarray(im, mode='L')new_im.paste(im, (i, j))  # 写入对应位置index += 1# 保存图片阵列new_im.save(name)h_dim = 20
z_dim = 10
batches = 512# 加载Fashion MNIST数据集
(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
# 归一化
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# 只需要通过图片数据即可构建数据集对象,不需要标签
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batches * 5).batch(batches)
# 构建测试集对象
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batches)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)class VAE(keras.Model):def __init__(self):super(VAE, self).__init__()# Encodersself.fc1 = layers.Dense(128, activation=tf.nn.relu)self.fc2 = layers.Dense(z_dim)  # 均值self.fc3 = layers.Dense(z_dim)  # 方差# Decodersself.f4 = layers.Dense(128, activation=tf.nn.relu)self.f5 = layers.Dense(784)def encoder(self, x):h = self.fc1(x)# 均值mu = self.fc2(h)# 方差log_var = self.fc3(h)return mu, log_vardef decoder(self, z):out = self.f4(z)out = self.f5(out)return out# 参数化def reparameterize(self, mu, log_var):esp = tf.random.normal(log_var.shape)std = tf.exp(log_var * 0.5)z = mu + std * espreturn zdef call(self, inputs, training):# [b,784] -> [b, z_dim],[b,z_dim]mu, log_var = self.encoder(inputs)# reparameterization tickz = self.reparameterize(mu, log_var)# --> [b, 784]x_hat = self.decoder(z)return x_hat, mu, log_varmodel = VAE()
model.build(input_shape=(4, 784))
model.summary()optimizer = optimizers.Adam(lr=1e-3)for epoch in range(100):for step, x in enumerate(train_db):# [b,28,28] -> [b,784]x = tf.reshape(x, [-1, 784])# 构建梯度记录器with tf.GradientTape() as tape:# 前向计算获得重建的图片x_rec_logits, mu, log_var = model(x)   # call函数返回值# x 与 重建的 x :重建图片与输入之间的损失函数rec_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=x, logits=x_rec_logits)rec_loss = tf.reduce_sum(rec_loss) / x.shape[0]# compute kl divergence散度  (mu, var) ~ N (0, 1) 并且p(z) ~ (0, 1)kl_div = -0.5*(log_var+1-mu**2-tf.exp(log_var))kl_div = tf.reduce_sum(kl_div) / x.shape[0]loss = rec_loss + 1.*kl_div  # 损失函数 = 自编码器重建误差函数 + KL散度grads = tape.gradient(loss, model.trainable_variables)optimizer.apply_gradients(zip(grads, model.trainable_variables))if step % 100 == 0:print(epoch, step, 'kl_div:', float(kl_div),'rec loss:',float(rec_loss))# 评估# 生成图片,从正太分布随机采样zz = tf.random.normal((batches, z_dim))logits = model.decoder(z)x_hat = tf.sigmoid(logits)x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() * 255.x_hat = x_hat.astype(np.uint8)save_image(x_hat, 'vae_images/sampled_epoch%d.png' % epoch)# 重建图片,从测试集中采用图片x = next(iter(test_db))x = tf.reshape(x, [-1, 784])x_hat_logits, _, _ = model(x)  # call返回值x_hat = tf.sigmoid(x_hat_logits)x_hat = tf.reshape(x_hat, [-1, 28, 28]).numpy() * 255.x_hat = x_hat.astype(np.uint8)save_image(x_hat, 'vae_images/rec_epoch%d.png' % epoch)

这篇关于Fashion MNIST 图片重建与生成(VAE)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309284

相关文章

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

C#实现将Excel表格转换为图片(JPG/ PNG)

《C#实现将Excel表格转换为图片(JPG/PNG)》Excel表格可能会因为不同设备或字体缺失等问题,导致格式错乱或数据显示异常,转换为图片后,能确保数据的排版等保持一致,下面我们看看如何使用C... 目录通过C# 转换Excel工作表到图片通过C# 转换指定单元格区域到图片知识扩展C# 将 Excel

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例