【点云处理之论文狂读经典版14】—— Dynamic Graph CNN for Learning on Point Clouds

本文主要是介绍【点云处理之论文狂读经典版14】—— Dynamic Graph CNN for Learning on Point Clouds,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DGCNN:Dynamic Graph CNN for Learning on Point Clouds

  • 摘要
  • 方法
    • Edge Convolution
    • Dynamic Graph Update
    • Properties
  • 实验
    • Classification
    • Part Segmentation
    • Indoor Scene Segmentation
  • 展望
  • 生词

摘要

  1. 背景: 对于计算机图形学中的许多应用而言,point clouds是一种灵活的几何表示,通常是大多数3D采集设备的原始输出
  2. 问题: 尽管point clouds的hand-designed特征在很久以前就被提出来了,但是最近在image上很火的convolutional neural networks(CNNs)表明了将CNN应用到point clouds上的价值。Point clouds自身缺乏拓扑信息,所以需要设计一个可以恢复拓扑信息的模型,从而达到丰富point clouds表示能力的目的
  3. 方法: 在CNN中嵌入了一个叫EdgeConv的模块
    • EdgeConv模块作用在graphs上,动态地对网络中每一层的graphs进行计算
    • EdgeConv模块可导,并且可以被嵌入任意现有的网络中
    • EdgeConv模块考虑了局部邻域信息和全局形状信息
    • EdgeConv 具有排序不变性
    • 特征空间中的multi-layer systems affinity采集了原始嵌入中潜在的长距离语义特征。
  4. 代码:
    • TensorFlow版本
    • PyTorch版本

方法

  • 为了挖掘局部几何结构,构造了一个局部邻域graph,并且在边上应用卷积操作,边连接着相邻的点对。
  • 本文中的graph不固定,在网络的每一层都动态更新,也就是说,一个点的 k N N kNN kNN集合中的元素在网络的层与层之间是变化的,是通过embeddings序列计算得到的。
  • 特征空间中的邻近性和输入不同,这样会导致信息在整个点云中的非局部扩散。

Edge Convolution

X = { x 1 , … , x n } ⊆ R F \mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\} \subseteq \mathbb{R}^{F} X={x1,,xn}RF为输入点云,其中 n n n是点的数量, F F F是点的维度,在最简单的情况下, F = 3 F=3 F=3,每个点都包括了3D坐标 x i = ( x i , y i , z i ) \mathbf{x}_{i}=\left(x_{i}, y_{i}, z_{i}\right) xi=(xi,yi,zi),在其他情况下,还会包括颜色、法向量等,在网络的其他层, F F F表示点的特征维度。

我们计算一个有向图 G = ( V , E ) \mathcal{G}=(\mathcal{V}, \mathcal{E}) G=(V,E) ,表示局部点云结构,其中 V = { 1 , … , n } \mathcal{V}=\{1, \ldots, n\} V={1,,n} E ⊆ V × V \mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} EV×V分别是顶点和边。在最简单的情况下,构造一个 X \mathrm{X} X的KNN graph G \mathcal{G} G。该graph包括self-loop,每个节点都会指向自己。定义边特征为 e i j = h Θ ( x i , x j ) \boldsymbol{e}_{i j}=h_{\Theta}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) eij=hΘ(xi,xj),其中 h Θ : R F × h_{\Theta}: \mathbb{R}^{F} \times hΘ:RF× R F → R F ′ \mathbb{R}^{F} \rightarrow \mathbb{R}^{F^{\prime}} RFRF是非线性函数,可学习参数为 Θ \boldsymbol{\Theta} Θ

最后,通过使用以channel为单位的对称聚合操作 □ \square (e.g., ∑ \sum or max) 定义EdgeConv操作,在与从每个顶点发出的所有边缘相关联的边缘特征上进行聚合操作。在第 i i i个顶点的EdgeConv输出表示为:
x i ′ = □ j : ( i , j ) ∈ E h Θ ( x i , x j ) \mathbf{x}_{i}^{\prime}=\mathop {\square}\limits_{{j:(i, j) \in \mathcal{E}}} h_{\Theta}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) xi=j:(i,j)EhΘ(xi,xj)
其中 x i \mathbf{x}_{i} xi是central point, { x j : ( i , j ) ∈ E } \left\{\mathbf{x}_{j}:(i, j) \in \mathcal{E}\right\} {xj:(i,j)E} x i \mathbf{x}_{i} xi的neigboured points。总而言之,给定带有 n n n个点的 F F F维点云,EdgeConv会产生一个相同数量点的 F ′ F^{\prime} F维点云。

Choice of h h h and □ \square

h h h的选择:

  1. 卷积式:
    x i m ′ = ∑ j : ( i , j ) ∈ E θ m ⋅ x j . x_{i m}^{\prime}=\sum_{j:(i, j) \in \mathcal{E}} \boldsymbol{\theta}_{m} \cdot \mathbf{x}_{j} . xim=j:(i,j)Eθmxj.
    其中 Θ = ( θ 1 , … , θ M ) \Theta=\left(\theta_{1}, \ldots, \theta_{M}\right) Θ=(θ1,,θM) M M M个不同的filters权值进行编码。每个 θ m \theta_{m} θm都有着与 x \mathbf{x} x相同的维度, ⋅ \cdot 表示内积。
  2. PointNet式:
    h Θ ( x i , x j ) = h Θ ( x i ) , h_{\Theta}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=h_{\Theta}\left(\mathbf{x}_{i}\right), hΘ(xi,xj)=hΘ(xi),
    只对全局形状信息编码,而不考虑局部邻域结构,算是EdgeConv的一种特殊情况。
  3. Atzmon提出的PCNN式:
    x i m ′ = ∑ j ∈ V ( h θ ( x j ) ) g ( u ( x i , x j ) ) , x_{i m}^{\prime}=\sum_{j \in \mathcal{V}}\left(h_{\boldsymbol{\theta}\left(\mathbf{x}_{j}\right)}\right) g\left(u\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right), xim=jV(hθ(xj))g(u(xi,xj)),
    其中 g g g是高斯kernel, u u u被用于计算欧式空间中的距离。
  4. PointNet++式:
    h Θ ( x i , x j ) = h Θ ( x j − x i ) . h_{\boldsymbol{\Theta}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=h_{\boldsymbol{\Theta}}\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right) . hΘ(xi,xj)=hΘ(xjxi).
    仅对局部信息进行编码,将整个形状划分为很多块,丢失了全局结构信息。
  5. 本文使用的对称边函数:
    h Θ ( x i , x j ) = h ˉ Θ ( x i , x j − x i ) . h_{\boldsymbol{\Theta}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\bar{h}_{\boldsymbol{\Theta}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}-\mathbf{x}_{i}\right) . hΘ(xi,xj)=hˉΘ(xi,xjxi).
    既结合了全局型状结构(通过以 x i \mathbf{x}_{i} xi为中心的坐标决定),又考虑到了局部邻域信息(通过 x j − x i \mathbf{x}_{j}-\mathbf{x}_{i} xjxi获取)。
    特别地,还可以通过下式表示EdgeConv的操作:
    e i j m ′ = ReLU ⁡ ( θ m ⋅ ( x j − x i ) + ϕ m ⋅ x i ) , e_{i j m}^{\prime}=\operatorname{ReLU}\left(\boldsymbol{\theta}_{m} \cdot\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)+\boldsymbol{\phi}_{m} \cdot \mathbf{x}_{i}\right), eijm=ReLU(θm(xjxi)+ϕmxi),
    然后再执行:
    x i m ′ = max ⁡ j : ( i , j ) ∈ E e i j m ′ , x_{i m}^{\prime}=\max _{j:(i, j) \in \mathcal{E}} e_{i j m}^{\prime}, xim=j:(i,j)Emaxeijm,
    其中 Θ = ( θ 1 , … , θ M , ϕ 1 , … , ϕ M ) \Theta=\left(\theta_{1}, \ldots, \theta_{M}, \phi_{1}, \ldots, \phi_{M}\right) Θ=(θ1,,θM,ϕ1,,ϕM)

□ \square 选择为max

Dynamic Graph Update

我们的实验表明,利用每一层所产生的特征空间中的最近邻来重新计算graph是有用的。这是我们的方法与在固定输入graph上工作的graph CNN一个关键区别。这样的动态graph更新是我们的架构的名称DGCNN的原因。

在每一层,都有不同的graph G ( l ) = ( V ( l ) , E ( l ) ) \mathcal{G}^{(l)}=\left(\mathcal{V}^{(l)}, \mathcal{E}^{(l)}\right) G(l)=(V(l),E(l)),其中第 l l l 层的边的形式为 ( i , j i 1 ) , … , ( i , j i k l ) \left(i, j_{i 1}\right), \ldots,\left(i, j_{i k_{l}}\right) (i,ji1),,(i,jikl),也就是 x j i 1 ( l ) , … , x j i k l ( l ) \mathbf{x}_{j_{i 1}}^{(l)}, \ldots, x_{j_{i k_{l}}}^{(l)} xji1(l),,xjikl(l)是距离 x i ( l ) \mathbf{x}_{i}^{(l)} xi(l)最近的 k l k_{l} kl个点。我们的网络学习如何构造每层中的graph G \mathcal{G} G,而不是在网络开始预测前就已经固定好了。在实现时,在距离空间中计算距离矩阵,然后对每个单点取最近的 k k k个点。

Properties

Permutation Invariance

考虑到每一层的输出为:
x i ′ = max ⁡ j : ( i , j ) ∈ E h Θ ( x i , x j ) , \mathbf{x}_{i}^{\prime}=\max _{j:(i, j) \in \mathcal{E}} h_{\boldsymbol{\Theta}}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right), xi=j:(i,j)EmaxhΘ(xi,xj),
由于max是一个对称函数,所以输出层 x i ′ \mathrm{x}_{i}^{\prime} xi相对于输入 x j \mathbf{x}_{j} xj是排序不变的。全局最大池化操作对于聚合点特征也是排序不变的。

Translation Invariance

我们的操作有着一部分的translation invariance性质,因为边函数公式不受平移的影响,也可以选择性的受translation影响。考虑在点 x j \mathbf{x}_{j} xj和点 x i \mathbf{x}_{i} xi上进行平移,当平移 T T T时,有:
e i j m ′ = θ m ⋅ ( x j + T − ( x i + T ) ) + ϕ m ⋅ ( x i + T ) = θ m ⋅ ( x j − x i ) + ϕ m ⋅ ( x i + T ) \begin{aligned} e_{i j m}^{\prime} &=\boldsymbol{\theta}_{m} \cdot\left(\mathbf{x}_{j}+T-\left(\mathbf{x}_{i}+T\right)\right)+\boldsymbol{\phi}_{m} \cdot\left(\mathbf{x}_{i}+T\right) \\ &=\boldsymbol{\theta}_{m} \cdot\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)+\boldsymbol{\phi}_{m} \cdot\left(\mathbf{x}_{i}+T\right) \end{aligned} eijm=θm(xj+T(xi+T))+ϕm(xi+T)=θm(xjxi)+ϕm(xi+T)
如果令 ϕ m = 0 \boldsymbol{\phi}_{m}=\mathbf{0} ϕm=0时,只考虑 x j − x i \mathbf{x}_{j}-\mathbf{x}_{i} xjxi,那么该操作是完全平移不变的。但是模型会损失局部信息的获取,所以说还是部分translation invariance。

实验

Classification

Part Segmentation

Indoor Scene Segmentation

展望

  1. 通过结合更快的数据格式提高模型的速度,改用多元组,不去寻找点对之间的关系
  2. 设计一个非共享的transformer网络,在每个local patch上都不同,更具灵活性

生词

  1. dub v 被称为…
  2. arguably adv 可以说是
  3. emanate v 发出

这篇关于【点云处理之论文狂读经典版14】—— Dynamic Graph CNN for Learning on Point Clouds的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/308403

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核