[1] Flink大数据流式处理利剑: 简介

2023-10-30 11:20

本文主要是介绍[1] Flink大数据流式处理利剑: 简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. Flink介绍

Flink是Apache基金会下的一个顶级项目,其是一个有状态计算的框架;既能处理无边界的数据流,也能处理有边界的数据流;同时Flink提供不同层次的API,从而满足不同的大数据业务处理场景。

那什么是流,任何类型的数据都可以形成一种事件流,比如,信用卡交易、传感器测量、机器日志、网站或移动应用程序上的用户交互记录,所有这些数据都形成一种流。

那么什么是有边界,什么是无边界;官方网站给了一张图和解释:

  • 无界流
    有定义流的开始,但没有定义流的结束。它们会无休止地产生数据。无界流的数据必须持续处理,即数据被摄取后需要立刻处理。我们不能等到所有数据都到达再处理,因为输入是无限的,在任何时候输入都不会完成。处理无界数据通常要求以特定顺序摄取事件,例如事件发生的顺序,以便能够推断结果的完整性。

  • 有界流
    有定义流的开始,也有定义流的结束。有界流可以在摄取所有数据后再进行计算。有界流所有数据可以被排序,所以并不需要有序摄取。有界流处理通常被称为批处理
    在这里插入图片描述

2. Flink的前世今生

Flink的官方代码地址: https://github.com/apache/flink/releases, 目前其在github上有17800 颗点赞!
在这里插入图片描述
其版本演化历史如下:

  • 2008:柏林理工大学的一个研究性项目Stratosphere
  • 2014-04:Stratosphere贡献给Apache基金会,成为Apache的孵化项目
  • 2014-12:成为Apache顶级项目
  • 2016-03:Flink 1.0.0
  • 2019年1月8日,阿里巴巴以9000万欧元收购该公司!
  • 2021年4月:最新的版本为Flink 1.13.0
  • 2021年09月29日 最新的版本为Flink 1.14.0
  • 2021年12月22日,发布了Apache Flink StateFun Log4j 紧急修复版本

3. Flink特点和应用架构

  • 支持Scala和Java API
  • 支持批流一体
  • 同时支持高吞吐、低延迟、高性能
  • 支持事件时间和处理时间语义,基于事件时间语义能够针对无序事件提供精确、一致的结果;基于处理时间语义能够用在具有极低延迟需求的应用中
  • 支持不同时间语义下的窗口编程
  • 支持有状态计算
  • 支持具有Backpressure功能的持续流模型
  • 提供精确一次(exactly once)的状态一致性保障
  • Flink在JVM内部实现了自己的内存管理
  • 基于轻量级的分布式快照CheckPoint的容错
  • 支持SavePoint机制,手工触发,适用于升级
  • 支持高可用性配置(无单点失效),与k8s、Yarn、Apache Mesos紧密集成。
  • 提供常见存储系统的连接器:Kafka,Elasticsearch等
  • 提供详细、可自由定制的系统及应用指标(metrics)集合,用于提前定位和响应问题

下面是其一个基本的应用架构例子。
在这里插入图片描述
Flink整个组件的层级如下:
在这里插入图片描述

4. 不同框架比较

下图是其与当前业界大数据主流流式计算框架的比较
在这里插入图片描述

5. 案例

  • 阿里巴巴如何利用Flink(Blink)

  • Saiki使用Flink而不用Spark

  • Flink在美团的使用

  • Flink在滴滴的使用

  • Flink在快手的使用

参考文献

https://github.com/apache/flink
https://flink.apache.org/usecases.html
https://flink.apache.org/flink-architecture.html

这篇关于[1] Flink大数据流式处理利剑: 简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/307580

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

SpringBoot整合Apache Flink的详细指南

《SpringBoot整合ApacheFlink的详细指南》这篇文章主要为大家详细介绍了SpringBoot整合ApacheFlink的详细过程,涵盖环境准备,依赖配置,代码实现及运行步骤,感兴趣的... 目录1. 背景与目标2. 环境准备2.1 开发工具2.2 技术版本3. 创建 Spring Boot

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1