[1] Flink大数据流式处理利剑: 简介

2023-10-30 11:20

本文主要是介绍[1] Flink大数据流式处理利剑: 简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. Flink介绍

Flink是Apache基金会下的一个顶级项目,其是一个有状态计算的框架;既能处理无边界的数据流,也能处理有边界的数据流;同时Flink提供不同层次的API,从而满足不同的大数据业务处理场景。

那什么是流,任何类型的数据都可以形成一种事件流,比如,信用卡交易、传感器测量、机器日志、网站或移动应用程序上的用户交互记录,所有这些数据都形成一种流。

那么什么是有边界,什么是无边界;官方网站给了一张图和解释:

  • 无界流
    有定义流的开始,但没有定义流的结束。它们会无休止地产生数据。无界流的数据必须持续处理,即数据被摄取后需要立刻处理。我们不能等到所有数据都到达再处理,因为输入是无限的,在任何时候输入都不会完成。处理无界数据通常要求以特定顺序摄取事件,例如事件发生的顺序,以便能够推断结果的完整性。

  • 有界流
    有定义流的开始,也有定义流的结束。有界流可以在摄取所有数据后再进行计算。有界流所有数据可以被排序,所以并不需要有序摄取。有界流处理通常被称为批处理
    在这里插入图片描述

2. Flink的前世今生

Flink的官方代码地址: https://github.com/apache/flink/releases, 目前其在github上有17800 颗点赞!
在这里插入图片描述
其版本演化历史如下:

  • 2008:柏林理工大学的一个研究性项目Stratosphere
  • 2014-04:Stratosphere贡献给Apache基金会,成为Apache的孵化项目
  • 2014-12:成为Apache顶级项目
  • 2016-03:Flink 1.0.0
  • 2019年1月8日,阿里巴巴以9000万欧元收购该公司!
  • 2021年4月:最新的版本为Flink 1.13.0
  • 2021年09月29日 最新的版本为Flink 1.14.0
  • 2021年12月22日,发布了Apache Flink StateFun Log4j 紧急修复版本

3. Flink特点和应用架构

  • 支持Scala和Java API
  • 支持批流一体
  • 同时支持高吞吐、低延迟、高性能
  • 支持事件时间和处理时间语义,基于事件时间语义能够针对无序事件提供精确、一致的结果;基于处理时间语义能够用在具有极低延迟需求的应用中
  • 支持不同时间语义下的窗口编程
  • 支持有状态计算
  • 支持具有Backpressure功能的持续流模型
  • 提供精确一次(exactly once)的状态一致性保障
  • Flink在JVM内部实现了自己的内存管理
  • 基于轻量级的分布式快照CheckPoint的容错
  • 支持SavePoint机制,手工触发,适用于升级
  • 支持高可用性配置(无单点失效),与k8s、Yarn、Apache Mesos紧密集成。
  • 提供常见存储系统的连接器:Kafka,Elasticsearch等
  • 提供详细、可自由定制的系统及应用指标(metrics)集合,用于提前定位和响应问题

下面是其一个基本的应用架构例子。
在这里插入图片描述
Flink整个组件的层级如下:
在这里插入图片描述

4. 不同框架比较

下图是其与当前业界大数据主流流式计算框架的比较
在这里插入图片描述

5. 案例

  • 阿里巴巴如何利用Flink(Blink)

  • Saiki使用Flink而不用Spark

  • Flink在美团的使用

  • Flink在滴滴的使用

  • Flink在快手的使用

参考文献

https://github.com/apache/flink
https://flink.apache.org/usecases.html
https://flink.apache.org/flink-architecture.html

这篇关于[1] Flink大数据流式处理利剑: 简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/307580

相关文章

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Java Docx4j类库简介及使用示例详解

《JavaDocx4j类库简介及使用示例详解》Docx4j是一个强大而灵活的Java库,非常适合需要自动化生成、处理、转换MicrosoftOffice文档的服务器端或后端应用,本文给大家介绍Jav... 目录1.简介2.安装与依赖3.基础用法示例3.1 创建一个新 DOCX 并添加内容3.2 读取一个已存

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返