【pandas技巧】group by+agg+transform函数

2023-10-30 03:36

本文主要是介绍【pandas技巧】group by+agg+transform函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. group by+单个字段+单个聚合

2. group by+单个字段+多个聚合

3. group by+多个字段+单个聚合

4. group by+多个字段+多个聚合

5. transform函数


studentsgradesexscoremoney
0小狗小学部female95844
1小猫小学部male93836
2小鸭初中部male83854
3小兔小学部female90931
4小花小学部male81853
5小草小学部male80991
6小狗初中部female81854
7小猫小学部male93886
8小鸭小学部male88983
9小兔小学部male86891
10小花初中部male92830
11小草初中部male84948

1. group by+单个字段+单个聚合

1.1 方法一

# 求每个人的总金额:
total_money=df.groupby("students")["money"].sum().reset_index()
total_money

1.2 方法二(使用agg)

df.groupby("students").agg({"money":"sum"}).reset_index()
#或者
df.groupby("students").agg({"money":np.sum}).reset_index()
studentsmoney
0小兔1820
1小狗1711
2小猫1670
3小花1861
4小草1825
5小鸭1719

2. group by+单个字段+多个聚合

2.1 方法一(使用group by+merge)

mean_money = df.groupby("students")["money"].mean().reset_index()
mean_money.columns = ["students","mean_money"]
mean_money
total_mean = total_money.merge(mean_money)
total_mean

total_mean = total_money.merge(mean_money)
total_mean
studentstotal_moneymean_money
0小兔1820910.0
1小狗1711855.5
2小猫1670835.0
3小花1861930.5
4小草1825912.5
5小鸭1719859.5

2.2 方法二(使用group by+agg)

total_mean = df.groupby("students").agg(total_money=("money", "sum"),mean_money=("money", "mean")).reset_index()
total_mean
studentstotal_moneymean_money
0小兔1820910.0
1小狗1711855.5
2小猫1670835.0
3小花1861930.5
4小草1825912.5
5小鸭1719859.5

3. group by+多个字段+单个聚合

3.1 方法一

df.groupby(["students","grade"])["money"].sum().reset_index()
studentsgrademoney
0小兔初中部1820
1小狗初中部843
2小狗小学部868
3小猫小学部1670
4小花初中部910
5小花小学部951
6小草初中部1825
7小鸭初中部1719

3.2 方法二(使用agg)

df.groupby(["students","grade"]).agg({"money":"sum"}).reset_index()
studentsgrademoney
0小兔初中部1820
1小狗初中部843
2小狗小学部868
3小猫小学部1670
4小花初中部910
5小花小学部951
6小草初中部1825
7小鸭初中部1719

4. group by+多个字段+多个聚合

agg函数的使用的方法是:agg(新列名=("原列名", "统计函数"))

df.groupby(["students","grade"]).agg(total_money=("money", "sum"),mean_money=("money", "mean"),total_score=("score", "sum")).reset_index()
studentsgradetotal_moneymean_moneytotal_score
0小兔初中部1820910.0192
1小狗初中部843843.088
2小狗小学部868868.093
3小猫小学部1670835.0178
4小花初中部910910.095
5小花小学部951951.098
6小草初中部1825912.5184
7小鸭初中部1719859.5173

5. transform函数

 5.1 方法一(使用groupby + merge)

df_1 = df.groupby("grade")["score"].mean().reset_index()
df_1.columns = ["grade", "average_score"]
df_1
gradeaverage_score
0初中部85.00
1小学部88.25
df_new1 = pd.merge(df, df_1, on="grade")
df_new1
studentsgradesexscoremoneyaverage_score
0小狗小学部female9584488.25
1小猫小学部male9383688.25
2小兔小学部female9093188.25
3小花小学部male8185388.25
4小草小学部male8099188.25
5小猫小学部male9388688.25
6小鸭小学部male8898388.25
7小兔小学部male8689188.25
8小鸭初中部male8385485.00
9小狗初中部female8185485.00
10小花初中部male9283085.00
11小草初中部male8494885.00

5.2 方法二(使用groupby + map)

dic = df.groupby("grade")["score"].mean().to_dict()
dic
{'初中部': 85.0, '小学部': 88.25}
df_new1["average_map_score"] = df["grade"].map(dic)
df_new1
studentsgradesexscoremoneyaverage_scoreaverage_map_score
0小狗小学部female9584488.2588.25
1小猫小学部male9383688.2588.25
2小兔小学部female9093188.2585.00
3小花小学部male8185388.2588.25
4小草小学部male8099188.2588.25
5小猫小学部male9388688.2588.25
6小鸭小学部male8898388.2585.00
7小兔小学部male8689188.2588.25
8小鸭初中部male8385485.0088.25
9小狗初中部female8185485.0088.25
10小花初中部male9283085.0085.00
11小草初中部male8494885.0085.00

5.3 方法三(使用transform一步到位)

df_new1["average_trans_score"] = df.groupby("grade")["score"].transform("mean")
df_new1
studentsgradesexscoremoneyaverage_scoreaverage_map_scoreaverage_trans_score
0小狗小学部female9584488.2588.2588.25
1小猫小学部male9383688.2588.2588.25
2小兔小学部female9093188.2585.0085.00
3小花小学部male8185388.2588.2588.25
4小草小学部male8099188.2588.2588.25
5小猫小学部male9388688.2588.2588.25
6小鸭小学部male8898388.2585.0085.00
7小兔小学部male8689188.2588.2588.25
8小鸭初中部male8385485.0088.2588.25
9小狗初中部female8185485.0088.2588.25
10小花初中部male9283085.0085.0085.00
11小草初中部male8494885.0085.0085.00

这篇关于【pandas技巧】group by+agg+transform函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/305337

相关文章

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

游戏闪退弹窗提示找不到storm.dll文件怎么办? Stormdll文件损坏修复技巧

《游戏闪退弹窗提示找不到storm.dll文件怎么办?Stormdll文件损坏修复技巧》DLL文件丢失或损坏会导致软件无法正常运行,例如我们在电脑上运行软件或游戏时会得到以下提示:storm.dll... 很多玩家在打开游戏时,突然弹出“找不到storm.dll文件”的提示框,随后游戏直接闪退,这通常是由于

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、