【Python】有三颗恒星的三体人很难不产生超能力

2023-10-29 23:30

本文主要是介绍【Python】有三颗恒星的三体人很难不产生超能力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

三体问题

经同学提出,我才意识到,原来三体人有三颗恒星……也就意味着可能三体星人连个稳定的恒星轨道都没有,悲惨指数直线上升。

但就拉格朗日方程而言,却并不困难。设 m i , i ∈ { 0 , 1 , 2 , 3 } m_i, i\in\{0,1,2,3\} mi,i{0,1,2,3}表示四颗星体,则对任意星体 i i i而言,其动能为

T i = 1 2 m i ( x ˙ 2 + y ˙ 2 ) T_i=\frac1 2m_i(\dot x^2+\dot y^2) Ti=21mi(x˙2+y˙2)

势能为

V i = − ∑ j ≠ i G m i m j ( x i − x j ) 2 + ( y i − y j ) 2 V_i=-\sum_{j\not=i}\frac{Gm_im_j}{\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}} Vi=j=i(xixj)2+(yiyj)2 Gmimj

拉格朗日量为 L = T − V L=T-V L=TV,根据拉格朗日方程

d d t ∂ L ∂ r ˙ − ∂ L ∂ r = 0 , r = x i , y i \frac{\text d}{\text dt}\frac{\partial L}{\partial\dot r}-\frac{\partial L}{\partial r}=0,r=x_i,y_i dtdr˙LrL=0r=xi,yi

x ¨ i = − ∑ i ≠ j G m j ( x i − x j ) ( x i − x j ) 2 + ( y i − y j ) 2 3 y ¨ i = − ∑ i ≠ j G m j ( y i − y j ) ( x i − x j ) 2 + ( y i − y j ) 2 3 \ddot x_i=-\sum_{i\not =j}\frac{Gm_j(x_i-x_j)}{\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}^3}\\ \ddot y_i=-\sum_{i\not =j}\frac{Gm_j(y_i-y_j)}{\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}^3} x¨i=i=j(xixj)2+(yiyj)2 3Gmj(xixj)y¨i=i=j(xixj)2+(yiyj)2 3Gmj(yiyj)

则令state以如下顺序编排, s = x 0 , x ˙ 0 , y 0 , y ˙ 0 , x 1 , x ˙ 1 … s=x_0,\dot x_0, y_0, \dot y_0, x_1,\dot x_1\dots s=x0,x˙0,y0,y˙0,x1,x˙1,则 s 4 i = x i , s 4 i + 1 = x ˙ i , s 4 i + 2 = y i , s 4 i + 3 = y ˙ i s_{4i}=x_i, s_{4i+1}=\dot x_i, s_{4i+2}=y_i, s_{4i+3}=\dot y_i s4i=xi,s4i+1=x˙i,s4i+2=yi,s4i+3=y˙i

则列出微分方程如下

def derivs(state, t):N = int(len(state)/4)dydx = np.zeros_like(state)for i in range(N*2):dydx[i*2] = state[i*2+1]for i in range(N):dydx[i*4+1] = 0dydx[i*4+3] = 0for j in range(N):if i==j:continuedx = state[i*4]-state[j*4]dy = state[i*4+2]-state[j*4+2]L = np.sqrt(dx**2+dy**2)**3dydx[i*4+1] -= G * m[j] * dx / Ldydx[i*4+3] -= G * m[j] * dy / Lreturn dydx

由于三体运动过于放荡不羁,故而随机生成的三体几乎很快就分道扬镳了,所以接下来选择适当位置和重量的三颗恒星。且令万有引力常数以年为时间单位

G = 4.98 × 1 0 − 10 k m 3 d − 2 k g − 1 G=4.98\times10^{-10} km^3d^{-2}kg^{-1} G=4.98×1010km3d2kg1

令恒星质量在 1 0 30 k g 10^{30}kg 1030kg的量级,空间距离在 1 0 11 k m 10^{11}km 1011km量级。行星质量在 1 0 25 10^{25} 1025量级。由于质量相差过大,所以假定行星质量为0也是可以的。

为了让恒星三体尽量稳定,在生成质量和初始坐标之后,令其初速度约等于稳定三体运动的速度。

首先,星体质量为 m i m_i mi,坐标为 ( X i , Y i ) (X_i,Y_i) (Xi,Yi),则其重心坐标为

x g = ∑ i m i X i ∑ m i , y g = ∑ i m i Y i ∑ m i x_g = \frac{\sum_im_iX_i}{\sum m_i},y_g = \frac{\sum_im_iY_i}{\sum m_i} xg=miimiXiyg=miimiYi

如将坐标系移动到 ( x g , y g ) (x_g,y_g) (xg,yg),则新坐标系下 x i = X i − x g , y i = Y i − x g x_i=X_i-x_g, y_i=Y_i-x_g xi=Xixg,yi=Yixg

则对 m i m_i mi而言,其运动的半径与加速度分别为为

r i = x i 2 + y i 2 x ¨ i = ∑ j ≠ i G m j ( x j − x i ) ( x i − x j ) 2 + ( y i − y j ) 2 3 y ¨ i = ∑ j ≠ i G m j ( y j − y i ) ( x i − x j ) 2 + ( y i − y j ) 2 3 ω i = x ¨ i 2 + y ¨ i 2 r i \begin{aligned} r_i&=\sqrt{x_i^2+y_i^2}\\ \ddot x_i&=\sum_{j\not=i}\frac{Gm_j(x_j-x_i)}{\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}^3}\\ \ddot y_i&=\sum_{j\not=i}\frac{Gm_j(y_j-y_i)}{\sqrt{(x_i-x_j)^2+(y_i-y_j)^2}^3}\\ \omega_i&=\sqrt{\frac{\sqrt{\ddot x_i^2+\ddot y_i^2}}{r_i}} \end{aligned} rix¨iy¨iωi=xi2+yi2 =j=i(xixj)2+(yiyj)2 3Gmj(xjxi)=j=i(xixj)2+(yiyj)2 3Gmj(yjyi)=rix¨i2+y¨i2

如果 ω i \omega_i ωi不相等,那么每个星体的角速度不同,则运行之后会马上打破现有的局面,从而进入不稳定的状态。

则其初始角度和速度为

cos ⁡ θ = x i r i sin ⁡ θ = y i r i u = x ˙ = − ω i r i sin ⁡ θ = − ω i y i v = y ˙ = ω i r i cos ⁡ θ = ω i x i \begin{aligned} \cos\theta&=\frac{x_i}{r_i}\\ \sin\theta&=\frac{y_i}{r_i}\\ u=\dot x&=-\omega_ir_i\sin\theta&=&-\omega_iy_i\\ v=\dot y&=\omega_ir_i\cos\theta&=&\omega_ix_i \end{aligned} cosθsinθu=x˙v=y˙=rixi=riyi=ωirisinθ=ωiricosθ==ωiyiωixi

得到下图,其中轨迹比较细的那个是行星……

在这里插入图片描述

则其初始化方法为

# 用于初始化星体的质量和位置
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import animation
from scipy import integratenp.random.seed(42)
G = 4.98e-10
m = np.random.rand(4)*10e30
m[0] /= 1e5     #行星质量
x0 = np.random.rand(4)*1e9
x0[0] *= 2      #让行星尽量离他们三颗恒星远一点
y0 = np.random.rand(4)*1e9
y0[0] *= 2
M = np.sum(m)       #总质量
# 计算质心,并以质心为原点
x0 -= np.sum(m*x0)/M
y0 -= np.sum(m*y0)/M
r = np.sqrt(x0**2+y0**2)
a = np.zeros(4)
b = np.zeros(4)
for i in range(4):for j in range(4):if i==j : continuedx = x0[i]-x0[j]dy = y0[i]-y0[j]L = np.sqrt(dx**2+dy**2)**3gm = G * m[j]a[i] += gm * dx / Lb[i] += gm * dy / Lom = np.sqrt(np.sqrt(a**2+b**2)/r)
u0 = -om*y0
v0 = om*x0

绘图代码为

state = np.zeros(16)
for i in range(4):state[4*i] = x0[i]state[4*i+1] = u0[i]state[4*i+2] = y0[i]state[4*i+3] = v0[i]dt = 50
t = np.arange(0, 125000, dt)
# 微分方程组数值解
orbit = integrate.odeint(derivs, state, t)plt.show()
xMax = np.max(orbit)
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(xlim=(-xMax,xMax),ylim=(-xMax,xMax))
ax.grid()lws = [0.5,2,2,2]
traces = [ax.plot([],[],'-', lw=lws[i])[0] for i in range(len(m))]
pts = [ax.plot([],[], marker='o')[0] for _ in range(len(m))]
time_template = 'time = %.1f d'
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)def animate(i):for n in range(4):traces[n].set_data(orbit[:i,4*n],orbit[:i,4*n+2])pts[n].set_data(orbit[i,4*n],orbit[i,4*n+2])time_text.set_text(time_template % (i*dt))return traces+pts+[time_text]ani = animation.FuncAnimation(fig, animate, range(len(t)),   interval=10, blit=True)
ani.save("tri_5.gif")
plt.show()

接下来还是体验一下行星视角,首先看一下在行星上观察到的恒星们的轨迹

在这里插入图片描述

如果看动图可能压迫感会更强一些,这些恒星简直对行星视若无物。

在这里插入图片描述

其绘图代码无变化,只需让orbit中的行星位置归零,

for i in range(4):orbit[:,4*i] -= orbit[:,0]orbit[:,4*i+2] -= orbit[:,2]

由于恒星辐射的功率密度以三次方的形式进行衰减,若假定行星接收到的功率是三颗恒星的叠加,那么就可以画出三体行星所接收的功率变化

在这里插入图片描述

由于取了以10为底的对数,所以其峰值功率是最小值的 1 0 7 10^7 107倍,所以这是什么概念呢?

假设在短时间内,功率是均匀的,也就是说单位时间内所爆发出的能量基本是不变的。一个汉堡的热量大概为2000kJ,那么其 1 0 4 10^4 104倍就是 2 × 1 0 7 k J 2\times10^7kJ 2×107kJ,相当于10发战斧导弹。

故而对于三体人而言,严冬之日的一个汉堡包,约等于盛夏之时的十发战斧导弹。所以三体人要是没个超能力什么的,基本上是活不下去的。

P = 0
for i in range(1,4):L = np.sqrt(orbit[:,4*i]**2+orbit[:,4*i+2]**2)P += 1/L**3# 为了看上去更清晰,对功率做对数
plt.plot(t,np.log10(P))

这篇关于【Python】有三颗恒星的三体人很难不产生超能力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/304085

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: