(三)库存超卖案例实战——使用redis分布式锁解决“超卖”问题

2023-10-29 19:45

本文主要是介绍(三)库存超卖案例实战——使用redis分布式锁解决“超卖”问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在上一节内容中我们介绍了如何使用mysql数据库的传统锁(行锁、乐观锁、悲观锁)来解决并发访问导致的“超卖问题”。虽然mysql的传统锁能够很好的解决并发访问的问题,但是从性能上来讲,mysql的表现似乎并不那么优秀,而且会受制于单点故障。本节内容我们介绍一种性能更加优良的解决方案,使用内存数据库redis实现分布式锁从而控制并发访问导致的“超卖”问题。关于redis环境的搭建这里不做介绍,可查看作者往期博客内容。

正文

  • 在项目中添加redis的依赖和配置信息

- pom依赖配置

<!--        数据库连接池工具包-->
<dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId>
</dependency><!--redis启动器-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

- application.yml配置

spring:application:name: ht-atp-platdatasource:driver-class-name: com.mysql.cj.jdbc.Driverurl: jdbc:mysql://192.168.110.88:3306/ht-atp?characterEncoding=utf-8&serverTimezone=GMT%2B8&useAffectedRows=true&nullCatalogMeansCurrent=trueusername: rootpassword: rootprofiles:active: dev# redis配置redis:host: 192.168.110.88lettuce:pool:# 连接池最大连接数(使用负值表示没有限制) 默认为8max-active: 8# 连接池中的最小空闲连接 默认为 0min-idle: 1# 连接池最大阻塞等待时间(使用负值表示没有限制) 默认为-1max-wait: 1000# 连接池中的最大空闲连接 默认为8max-idle: 8

- redis序列化配置

package com.ht.atp.plat.config;import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.JsonTypeInfo;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.jsontype.impl.LaissezFaireSubTypeValidator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;@Configuration
public class RedisConfig {/*** @param factory* @return*/@Beanpublic RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {// 缓存序列化配置,避免存储乱码RedisTemplate<String, Object> template = new RedisTemplate<>();template.setConnectionFactory(factory);Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);ObjectMapper objectMapper = new ObjectMapper();objectMapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);objectMapper.activateDefaultTyping(LaissezFaireSubTypeValidator.instance,ObjectMapper.DefaultTyping.NON_FINAL, JsonTypeInfo.As.PROPERTY);jackson2JsonRedisSerializer.setObjectMapper(objectMapper);StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();// key采用String的序列化方式template.setKeySerializer(stringRedisSerializer);// hash的key也采用String的序列化方式template.setHashKeySerializer(stringRedisSerializer);// value序列化方式采用jacksontemplate.setValueSerializer(jackson2JsonRedisSerializer);// hash的value序列化方式采用jacksontemplate.setHashValueSerializer(jackson2JsonRedisSerializer);template.afterPropertiesSet();return template;}
}

  •  在redis中增加商品P0001的库存数量为10000

  • 使用redis不加锁的业务测试

- 业务测试代码

    /*** 使用redis不加锁*/@Overridepublic void checkAndReduceStock() {// 1. 查询库存数量String stockQuantity = redisTemplate.opsForValue().get("P0001").toString();// 2. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 3.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}}}

- 使用jmeter压测,查看测试结果:库存并没有减少为0,说明存在“超卖”问题

  • 使用redis的setnx指令加锁,开启三个相同服务,使用jmeter压测

- redis加锁测试代码

/*** 使用redis加锁* */@Overridepublic void checkAndReduceStock() {// 1.使用setnx加锁Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock-stock", "0000");// 2.重试:递归调用,如果获取不到锁if (!lock) {try {//暂停50msThread.sleep(50);this.checkAndReduceStock();} catch (InterruptedException e) {e.printStackTrace();}} else {try {// 3. 查询库存数量String stockQuantity = (String) redisTemplate.opsForValue().get("P0001");// 4. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 5.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}} else {System.out.println("该库存不存在!");}} finally {// 5.解锁redisTemplate.delete("lock-stock");}}}

- 开启服务7000、7001、7002

 - jmeter压测结果:平均访问时间364ms,接口吞吐量为每秒249

- redis数据库库存结果为:0,并发“超卖”问题解决

  • 以上普通加锁方式存在死锁问题及死锁问题的解决方案

- 死锁产生的原因:在上述redis加锁的正常情况下,是可以解决并发访问的问题,但是也存在死锁的问题,例如7000的服务获取到锁之后,由于服务异常导致锁没有释放,那么7001和7002服务将永远不可能获取到锁。

- 解决方案:给锁设置过期时间,自动释放锁

①使用expire设置过期时间(缺乏原子性:如果在setnx和expire之间出现异常,锁也无法释放)

②使用setex指令设置过期时间:set key value ex 3 nx(保证原子性操作既达到setnx的效果,又设置了过期时间)

- 代码实现

public void checkAndReduceStock() {// 1.使用setex加锁,保证加锁的原子性,以及锁可以自动释放Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock-stock", "0000",3, TimeUnit.SECONDS);// 2.重试:递归调用,如果获取不到锁if (!lock) {try {//暂停50msThread.sleep(50);this.checkAndReduceStock();} catch (InterruptedException e) {e.printStackTrace();}} else {try {// 3. 查询库存数量String stockQuantity = (String) redisTemplate.opsForValue().get("P0001");// 4. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 5.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}} else {System.out.println("该库存不存在!");}} finally {// 5.解锁redisTemplate.delete("lock-stock");}}}

- 测试结果:库存扣减为0,锁也释放

  •  防止误删,在以上普通加锁的方式下,存在锁被误删除的情况

- 锁误删除的原因:在上面的加锁场景中,会出现以下的情况,A请求方法获取到锁之后,在业务还没有执行完成,锁就被自动释放,这个时候B请求方法也会获取到锁,在B业务还未执行完成之前,A执行完成并执行手动删除锁操作,这个时候会把B业务的锁释放掉,导致B刚刚获取到锁就被释放,从而产生后续的并发访问问题。

- 模拟锁误删除产生的并发问题

- 库存扣减结果:没有扣减为0,产生并发问题

- 解决方案,每个请求使用全局唯一UUID为value值,删除锁之前,先判断value值是否相同,相同再删除锁

public void checkAndReduceStock() {// 1.使用setex加锁,保证加锁的原子性,以及锁可以自动释放String uuid = UUID.randomUUID().toString();Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock-stock", uuid, 1, TimeUnit.SECONDS);// 2.重试:递归调用,如果获取不到锁if (!lock) {try {//暂停50msThread.sleep(10);this.checkAndReduceStock();} catch (InterruptedException e) {e.printStackTrace();}} else {try {// 3. 查询库存数量String stockQuantity = (String) redisTemplate.opsForValue().get("P0001");// 4. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 5.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}} else {System.out.println("该库存不存在!");}} finally {// 5.先判断是否是自己的锁,然后再解锁String redisUuid = (String) redisTemplate.opsForValue().get("lock-stock");if (StringUtils.equals(uuid, redisUuid)) {redisTemplate.delete("lock-stock");}}}}

- 存在的问题:由于判断锁和解锁的操作不具有原子性,仍然会存在误删除的操作,如A请求在完成判断之后准备删除锁的时候,此时A的锁自动释放,B请求获取到锁,这个时候A请求会手动将B请求的锁删除掉,依然存在并发访问的问题。该概率很小。

  •  使用lua脚本解决锁手动释放删除的操作是原子性操作

- lua代码解决误删操作

public void checkAndReduceStock() {// 1.使用setex加锁,保证加锁的原子性,以及锁可以自动释放String uuid = UUID.randomUUID().toString();Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock-stock", uuid, 1, TimeUnit.SECONDS);// 2.重试:递归调用,如果获取不到锁if (!lock) {try {//暂停50msThread.sleep(10);this.checkAndReduceStock();} catch (InterruptedException e) {e.printStackTrace();}} else {try {// 3. 查询库存数量String stockQuantity = (String) redisTemplate.opsForValue().get("P0001");// 4. 判断库存是否充足if (stockQuantity != null && stockQuantity.length() != 0) {Integer quantity = Integer.valueOf(stockQuantity);if (quantity > 0) {// 5.扣减库存redisTemplate.opsForValue().set("P0001", String.valueOf(--quantity));}} else {System.out.println("该库存不存在!");}} finally {// 5.先判断是否是自己的锁,然后再解锁String script = "if redis.call('get', KEYS[1]) == ARGV[1] " +"then " +"   return redis.call('del', KEYS[1]) " +"else " +"   return 0 " +"end";redisTemplate.execute(new DefaultRedisScript<>(script, Boolean.class), Arrays.asList("lock-stock"), uuid);}}}

结语

关于使用redis分布式锁解决“超卖”问题的内容到这里就结束了,我们下期见。。。。。。

这篇关于(三)库存超卖案例实战——使用redis分布式锁解决“超卖”问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/302949

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我