深度神经网络为何成功?其中的过程、思想和关键主张选择

2023-10-29 18:45

本文主要是介绍深度神经网络为何成功?其中的过程、思想和关键主张选择,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       历史总是由一群人共同创造的,历史的闪亮则是由一群人中的某一小撮人创造的。那么,我们看看深度学习的成功史,看看ChatGPT是怎样出现的。

        LeNet(1989)在小数据集上取得了很好的效果,但是在更大、更真实地数据集上训练卷积神经网络地性能和可行性还有待研究。

       与神经网络竞争的是传统机器学习方法,比如SVM(支持向量机)。这个阶段性能比神经网络方法好。

        这个时期,有好多人在研究,他们持有不同的观点和信念,有一小撮人的观点、信念以及思想主张和坚持,最终成就人类的历史伟业。

        机器学习研究人员的观点:相信机器学习既重要又美丽,用优雅的理论证明各种模型的性质。

        计算机视觉的研究人员的观点:推动领域进步的是数据特征,而不是学习算法。他们相信,从对最终模型精度的影响来说,更大或更干净的数据集或是稍加改进的特征提取方法,比任何学习算法带来的进步大的多。

        另一种观点:观察并设计图像特征的提取方法。主要工作是设计一套新的特征函数,改进结果并撰写论文,代表性成果有:SIFT、SURF、HOG等。

       还有一组研究人员(Yann LeCun, Geoff Hinton, Yoshua Bengio, Andrew Ng, Shun-ichi Amari, and Juergen Schmidhuber)的观点:认为特征本身应该被学习。有趣的是,在AlexNet网络的底层,模型学习到了一些类似于传统滤波器的特征提取器。

       最终的突破出现在2012年,AlexNet在ImageNet挑战赛上一战成名,以很大优势赢得挑战。成功可以归因于两个关键的因素:数据和硬件。2009年,ImageNet有100万个样本,1000个不同类别的对象。硬件上GPU的发展,庞大的GPU数量远远快于CPU的计算能力,GPU的带宽比CPU快10倍。

       在这个思路上一路狂奔,出现了阿尔法狗(AlphaGo)一样,2016年和2017年在围棋挑战赛上分别打败李世石和柯洁,引发全球轰动。

       在这个思路上继续发展,产生了transformer、bert等等优秀的深度学习模型类,ChatGPT(2022)则是一个现象级应用,吸引了大量关注。

       ChatGPT的出现,其基础是超过万亿的数据量(数据),上万张的GPU并行计算(算力),千亿甚至万亿参数的神经网络(算法),在今天,处于全球领先地位(the state of art),具有强大的引领效应。
     

      从transformer到ChatGPT的演进过程,可参考文章《ChatGPT技术原理解析:从RL之PPO算法、RLHF到GPT4、instructGPT_v_JULY_v的博客-CSDN博客》。

这篇关于深度神经网络为何成功?其中的过程、思想和关键主张选择的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/302630

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller