FPGA 17最佳论文 ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA

本文主要是介绍FPGA 17最佳论文 ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深鉴科技的 ESE 语音识别引擎的论文在 FPGA 2017 获得了唯一的最佳论文

聚焦于使用 LSTM 进行语音识别的场景,结合深度压缩以及专用处理器架构,使得经过压缩的网络在 FPGA 能够实现超越 Pascal Titan X GPU 一个数量级的能效比。论文中所描述的 ESE 语音识别引擎也是深鉴科技 RNN 处理器产品的原型。

软件方面,我们提出了 Load-balance-aware pruning。除了在纯算法上追求压缩率,还会考虑到最终要多核运行并行加速的时候不同核心之间的负载均衡,这种加速差其实属于最优的方式。

EIE 只能运行卷积神经网络的 FC 层。我们考虑到 RNN 的状态机会整体非常复杂,因为里面会有非常多个矩阵要运转,不仅要支持多路用户,还有里面的非线性函数都有非常大的区别。所以说在整个硬件架构过程做了一个重新设计,能够支持多路用户,也能够支持 RNN,如 LSTM 内部多个矩阵的运转。这样整个系统运转的(速度)都是高得多的一个架构。

通常大家会用一些启发式的算法去发现里面不重要的权重,并将它去除,然后再使用数据来进行 re-train 时能够把它的精确度恢复起来。其中绝对的阈值,做 re-train 时权重增长的幅度均可用来作为启发式算法的判别准则。

由于神经网络中的特征表示比较稀疏,所以这样一种非规则稀疏模型压缩效果往往比大家设计一个小一些的模型效果更好:直接砍 channel 数量,或者一些数学上的分解方式。其他模型压缩的方法有 SVD、Winograd 分解、binary network 等,但相比而言 Deep Compression 整体的性价比会更高。

LSTM的结构

它用于得到acoustic output probabilities(音节的输出概率),而且很有可能会占据整个系统中的90%以上的执行时间。所以作者认为要加速LSTM计算。
一个LSTM层里面,实际上是对一个序列x_1 … x_T的递归计算,其中最重要的是有i,f,o三个门控单元,分别叫做input,forget,output gate;一种比较流行的计算模式如下公式所示,也就是Figure 4所代表的含义。
在这里插入图片描述

模型压缩

1剪枝pruning与负载均衡Load Balance

基本的剪枝方法和Deep Compression 方法是一致的,
问题:在硬件计算中,如果需要一个批次的计算全部完成,就会因为非零参数严重不均匀,出现快的计算单元等待慢的计算单元执行的情况,造成性能的浪费。

方法:很简单,就是将分组了的参数按照一致的比例去稀疏,而不是原来那样全局稀疏;并通过retraining把损失的精度补回来。这样就做到了负载均衡的稀疏参数了。
利于并行计算
在这里插入图片描述

编码Encoding

属于CSC的编码,因为DDR位宽是512bit,所以需要512b对齐,PCIE接口位宽是128bit,所以有128bit对齐的要求。一个weight包含了12bit数据本身+4bit offset,offset表示距离上一个非0值的中间有几个0;
在这里插入图片描述

下面这张图是想表示在本文的设计中,一个input data读一次会被计算多次
在这里插入图片描述

整个系统的架构图
在这里插入图片描述
可以看到,有多个channel,每个channel独立计算一个voice vector;在一个channel内部,见右图,有很多个PE,每个PE独立占有一个数据FIFO,而PE的数据来源都是共享的。
整个ESE有32个channel,每个channel有32个PE。

参数会通过指针buffer和weight buffer先把参数连续存在片上RAM中,在解码中,因为知道了某个参数的位置index(通过offset,就可以知道它要和哪个数据相乘),就把需要的数据按序取到FIFO中,在计算的时候就不需要管序号了,只要FIFO和weight buffer中取出来的数据对的上;临时sum结果存在act buffer中,然后每一次乘完后再由Accu累加器把之前的结果和当前结果累加起来;这里有一点,因为一个PE可能需要处理参数矩阵中的多列,所以我猜测act buffer是可以存多个临时结果的。另外剩下的部分就是向量点乘,然后是加法,激活函数这些,完成LSTM整个过程,

在这里插入图片描述

这样看来,处理一个voice数据只有32个PE,也就是32个MAC,需要同时处理32个voice数据才能用满引擎。其实也折射了另外一个问题,sparse计算架构,单个数据处理时很难把并行的PE数量做大(为什么呢?因为目前看到的方案,在sparse计算中,要么就是用参数索引数据,要么用数据索引参数,索引取数据开销比较大;还有一个问题是,一个weight column可以做local reduction,以减少中间计算结果,但是data利用率低,要想data利用率高,中间计算结果就很大,这也是一个矛盾。),还是需要批处理才能提高总的性能。

ref:https://blog.csdn.net/xbinworld/article/details/74012394

这篇关于FPGA 17最佳论文 ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301691

相关文章

mtu设置多少网速最快? 路由器MTU设置最佳网速的技巧

《mtu设置多少网速最快?路由器MTU设置最佳网速的技巧》mtu设置多少网速最快?想要通过设置路由器mtu获得最佳网速,该怎么设置呢?下面我们就来看看路由器MTU设置最佳网速的技巧... 答:1500 MTU值指的是在网络传输中数据包的最大值,合理的设置MTU 值可以让网络更快!mtu设置可以优化不同的网

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

Vue 2 项目中配置 Tailwind CSS 和 Font Awesome 的最佳实践举例

《Vue2项目中配置TailwindCSS和FontAwesome的最佳实践举例》:本文主要介绍Vue2项目中配置TailwindCSS和FontAwesome的最... 目录vue 2 项目中配置 Tailwind css 和 Font Awesome 的最佳实践一、Tailwind CSS 配置1. 安

Spring Boot 常用注解详解与使用最佳实践建议

《SpringBoot常用注解详解与使用最佳实践建议》:本文主要介绍SpringBoot常用注解详解与使用最佳实践建议,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、核心启动注解1. @SpringBootApplication2. @EnableAutoConfi

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java