【简陋Web应用2】人脸检测——基于Flask和PaddleHub

2023-10-29 15:50

本文主要是介绍【简陋Web应用2】人脸检测——基于Flask和PaddleHub,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 🚩 前言
  • 🌺 效果演示
  • 🥦 分析与设计
  • 🍉 实现
    • 🍬 1. 部署人脸检测模型
    • 🍭 2. 使用Flask构建app
      • 2.1 目录结构
      • 2.2 forms.py
      • 2.3 utils.py
      • 2.4 app.py
      • 2.5 index.html
  • 🥝 Bug(s)


🚩 前言

本次实现了一个在浏览器中运行的简陋的人脸检测功能,由于水平有限,这里使用表单上传图片,只能一次检测一张人脸。实现过程中遇到的主要问题是数据格式转换的问题。

🌺 清风莫追 🌺

csdn个人主页:https://blog.csdn.net/m0_63238256

🌺 效果演示

请添加图片描述

🥦 分析与设计

之前已经成功基于AI分词模型,构建了一个Web应用。套路大致相同,与本次任务的主要区别在于,本次传递的数据是图像而不是文本。图像数据会带来一个新的问题:

  • 图像的编码方式丰富,数据处理过程中需要进行一些数据格式转换

应用的逻辑大致如下:

  1. 用户通过表单从浏览器上传图像
  2. 将图像转发给人脸检测模型,得到人脸位置坐标
  3. 使用矩形框出图像中的人脸
  4. 浏览器显示结果

🍉 实现

🍬 1. 部署人脸检测模型

一行命令即可完成服务化部署(你需要先安装PaddleHub库),pyramidbox_lite_mobile是一个预训练的人脸检测模型。

hub serving start -m pyramidbox_lite_mobile

你可以使用下面的代码(来自PaddleHub的文档,记得修改未你自己的图片存放路径),测试接口

# coding: utf8
import requests
import json
import cv2
import base64def cv2_to_base64(image):data = cv2.imencode('.jpg', image)[1]return base64.b64encode(data.tostring()).decode('utf8')if __name__ == '__main__':# 获取图片的base64编码格式 (记得修改你自己的图片存放路径)img1 = cv2_to_base64(cv2.imread("./static/Aaron_Peirsol_0001.jpg"))img2 = cv2_to_base64(cv2.imread("./static/Aaron_Peirsol_0002.jpg"))data = {'images': [img1, img2]}# 指定content-typeheaders = {"Content-type": "application/json"}# 发送HTTP请求url = "http://127.0.0.1:8866/predict/pyramidbox_lite_mobile"r = requests.post(url=url, headers=headers, data=json.dumps(data))# 打印预测结果print(r.json())

🍭 2. 使用Flask构建app

2.1 目录结构

- templates- index.html
- app.py
- forms.py
- utils.py

其中utils.py封装了一些简单的函数。

2.2 forms.py

下面定义了一个表单,它只有一个字段face_img,用于上传待检测的人脸图片。validatiors中描述了很多message,在上传的表单不满足约束时,可在html模板中通过{{ form.face_img.erros }}获取相关的message信息。

from flask_wtf import FlaskForm
from flask_wtf.file import FileAllowed, FileRequired, FileSize, FileFieldclass ImageForm(FlaskForm):face_img = FileField("face_img", validators=[FileRequired(message="不能为空"),FileAllowed(['jpg', 'png'], message="仅支持jpg/png格式"),FileSize(max_size=2048000, message="图片不能大于2Mb")],description="图片不能大于2Mb,仅支持jpg/png格式")

2.3 utils.py

封装了三个简单的函数,但在app.py中只使用了cv2_to_base64()

import base64
import numpy as np
import cv2def base64_to_cv2(img: str):# base64 -> 二进制 -> ndarray -> cv2# 解码为二进制数据img_codes = base64.b64decode(img)img_np = np.frombuffer(img_codes, np.uint8)img_cv2 = cv2.imdecode(img_np, cv2.IMREAD_COLOR)return img_cv2def cv2_to_base64(image):data = cv2.imencode('.jpg', image)[1]return base64.b64encode(data.tostring()).decode('utf8')# 显示cv2格式的图像 --> 开发过程中测试图像是否正常时使用
def cv2_show(img_cv2):cv2.imshow('img', img_cv2)cv2.waitKey(0)cv2.destroyAllWindows()

2.4 app.py

:如果以后数据在转换的过程中究竟变成了什么格式,那就把它们打印出来看看叭!例如print(data, type(data))

主要的逻辑就在这里了,图像主要经历了三种类型的格式:

  • 文件对象:从前端表单返回的图像文件的格式。
  • cv2:opencv的图像格式,是一个numpyndarray数组。
  • str:base64编码格式的字符串;是作为模型输入,和在前端显示图像的格式。

数据格式的变化流程大致如下图:

在这里插入图片描述

# 注:在推理前将图像缩放到指定的尺寸,即能提升速度,有时也能提升精度(实测像素太高时识别效果也不好)
from flask import Flask, render_template, request
import requests
from forms import ImageForm
import cv2
import numpy as np
import json
import time
from utils import cv2_to_base64app = Flask(__name__)
app.config['SECRET_KEY'] = 'your_secret_key_here'@app.route('/', methods=['GET', 'POST'])
def predict():form = ImageForm()if form.validate_on_submit():# 1. 从前端表单获取图像文件file = form.face_img.data  # <class 'werkzeug.datastructures.FileStorage'>file_content = file.read()  # <class 'bytes'># 2. 图像文件转cv2, 并缩放到指定尺寸 --> 尺寸太大或太小,识别精度都会变差img_cv2 = np.asarray(bytearray(file_content), dtype=np.uint8)  # (len,)img_cv2 = cv2.imdecode(img_cv2, cv2.IMREAD_COLOR)  # (w, h, c)img_cv2 = cv2.resize(img_cv2, (250, 250), interpolation=cv2.INTER_LINEAR)# 3. cv2转str(base64)img_base64 = cv2_to_base64(img_cv2)# 4. str(base64)输入模型 --> json --> 人脸框坐标data = {'images': [img_base64]}headers = {"Content-type": "application/json"}url = "http://127.0.0.1:8866/predict/pyramidbox_lite_mobile"start_time = time.time()r = requests.post(url=url, headers=headers, data=json.dumps(data))use_time = time.time() - start_timerectangle = r.json()['results'][0]['data'][0]  # 一张图片 --> dict{confidence, left, top, right, bottom}# 5. cv2,json --> 画矩形 --> cv2cv2.rectangle(img_cv2, (rectangle['left'], rectangle['top']),(rectangle['right'], rectangle['bottom']),(255, 0, 0),  # 蓝色thickness=2)# 6. cv2转str(base64)img_base64 = cv2_to_base64(img_cv2)# 7. str(base64) 返回到前端return render_template('index.html', form=form, img_base64=img_base64, confidence=rectangle['confidence'], use_time=use_time)return render_template('index.html', form=form)if __name__ == '__main__':app.run(debug=True, port=5000)

2.5 index.html

视图模板,也是十分简陋。

<h1>试试人脸检测</h1><!-- 1. 上传图像的表单 -->
<form action="" method="post" class="mt-4" enctype="multipart/form-data"><!-- csrf这一句好像可以没啥用 -->{{ form.csrf_token }}{{ form.face_img() }}<input type="submit" value="Submit">
</form><!-- 2. 显示检测结果 -->
{% if img_base64 %}<img src="data:image/jpeg;base64, {{ img_base64 }}" width="250" height="250"><p>置信度: {{ confidence }}</p><p>推理耗时(秒): {{ use_time }}</p>
{% endif %}<!-- 3. 显示错误信息 -->
{% if form.face_img.errors %}<div class="alert alert-danger">{% for error in form.face_img.errors %}{{ error }}{% endfor %}</div>
{% endif %}

🥝 Bug(s)

1、后端接收不到上传的图片

使用表单的模板代码如下:

<form action="" method="post" class="mt-4"><!-- csrf这一句好像可以删掉 -->{{ form.csrf_token }}{{ form.face_img() }}<input type="submit" value="Submit">
</form>

解决:在 Flask 中处理文件上传时,需要<form>中添加 enctype="multipart/form-data" 属性,这样浏览器才能正确识别上传的文件数据。

2、数据格式转换晕头转向

app.py中,我最初对于图像格式的转换十分懵圈,想整理下思路,结果却如下图,还是很乱。经过多次重构,才变成了 2.5 app.py 那里显示的图。

重构还是挺有用的!有时代码经过重构也会变得清晰。

在这里插入图片描述


原文链接:https://cfeng.blog.csdn.net/article/details/129636071

这篇关于【简陋Web应用2】人脸检测——基于Flask和PaddleHub的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301674

相关文章

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

SpringBoot项目Web拦截器使用的多种方式

《SpringBoot项目Web拦截器使用的多种方式》在SpringBoot应用中,Web拦截器(Interceptor)是一种用于在请求处理的不同阶段执行自定义逻辑的机制,下面给大家介绍Sprin... 目录一、实现 HandlerInterceptor 接口1、创建HandlerInterceptor实

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应