LangChain+LLM实战---BERT主要的创新之处和注意力机制中的QKV

2023-10-29 15:36

本文主要是介绍LangChain+LLM实战---BERT主要的创新之处和注意力机制中的QKV,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BERT主要的创新之处

BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer架构的预训练语言模型,由Google在2018年提出。它的创新之处主要包括以下几个方面:

  • 双向性(Bidirectional):BERT是第一个采用双向Transformer架构进行预训练的模型。传统的语言模型如GPT(Generative Pre-trained Transformer)只能根据上下文左边的词预测当前词,而BERT引入了Masked Language Model(MLM)任务,将一部分输入文本中的词进行遮盖,然后通过双向Transformer来预测这些被遮盖的词,从而使模型能够同时获得左侧和右侧的上下文信息。
  • 预训练与微调(Pretraining and Fine-tuning):BERT采用两阶段的训练方法。首先,在大规模的未标记数据上进行预训练,通过预测被遮盖的词和句子级别的任务来学习通用的语言表示。然后,在特定任务上进行微调,使用标记的数据集来进一步调整模型参数,使其适应具体的下游任务,如文本分类、命名实体识别等。
  • 预训练任务的多样性(Diverse Pretraining Tasks):为了提高模型的泛化能力,BERT使用了多个预训练任务。除了MLM任务外,BERT还引入了句子级别的任务,即Next Sentence Prediction(NSP)。NSP任务要求模型判断两个句子是否是连续的,并学习句子级别的语义关系。这样的多样性任务设计使得BERT能够学习到更丰富的语言表示。
  • Masked Language Model(MLM):BERT中的MLM任务是通过将输入文本中的一部分词进行随机遮盖来训练模型。这样做的好处是模型需要通过上下文信息来预测被遮盖的词,从而更好地理解词之间的关联性和语义。MLM任务的引入使得BERT能够学习到更深层次的语言表示。
  • 多层表示与多任务学习(Multi-layer Representation and Multi-task Learning):BERT采用了多层Transformer编码器来编码输入序列的信息。这些编码器层之间可以进行信息的传递和交互,从而丰富了表示的表达能力。同时,BERT还可以通过微调阶段的多任务学习来提高模型的泛化性能,将不同的下游任务作为辅助任务来共同训练模型,使得模型能够学习到更通用的语言表示。

注意力机制中的QKV

在注意力机制(Attention Mechanism)中,Q、K和V代表查询(Query)、键(Key)和值(Value)。

  • 查询(Query)(表示为Q):查询是用于指定要关注的特定位置或特征的向量。在注意力机制中,查询向量用于计算与其他位置或特征的相似度,并决定在注意力权重计算中的重要程度。
  • 键(Key)(表示为K):键向量用于提供与查询向量的相似度比较。它可以看作是提供参考信息的向量。
  • 值(Value)(表示为V):值向量是根据注意力权重进行加权求和的向量。它包含了要传递给下一步的信息。

在注意力机制中,通过计算查询向量(Q)与键向量(K)之间的相似度,然后使用归一化的相似度得到注意力权重。最后,使用注意力权重对值向量(V)进行加权求和,得到最终的上下文表示或注意力输出。

注意力机制的计算可以用以下公式表示:

Attention(Q, K, V) = softmax(QK^T / sqrt(d_k))V

其中,d_k是查询和键的维度。softmax函数用于归一化相似度,使得注意力权重的总和为1。除以sqrt(d_k)是为了缩放相似度,以确保在计算过程中避免梯度爆炸或梯度消失的问题

这篇关于LangChain+LLM实战---BERT主要的创新之处和注意力机制中的QKV的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301611

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程