OpenVINO 2021r2 C++ 超分辨率重建FSRCNN

2023-10-29 13:38

本文主要是介绍OpenVINO 2021r2 C++ 超分辨率重建FSRCNN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近把OpenVINO升级到了最新版本(超级不喜欢openvino这点,每次升级都要换几个接口,虽说API会向前兼容几个版本,不过跟起来真累啊,OpenCV, FFMPEG也是这样,是不是开源项目都是这么玩的啊... ) 顺便来试试看最新版本的OpenVINO对图像超分的模型支持的怎么样。

 

先从FSRCNN 开始,毕竟这是图像超分的经典模型,运算量小推理速度快,超分效果又好。

 

从https://www.github.com/Saafke/FSRCNN_Tensorflow上看具体的实现,FSRCNN模型是针对图像的Y通道做处理,先除以255.0转到[0,1]的浮点,然后做2倍的超分,推理输出乘以255.0,并且clip(0,255)作为输出Y通道,对于Cb,Cr通道直接做bicubic 2X放大,最后组合成BGR图像输出

    def upscale(self, path):"""Upscales an image via model."""img = cv2.imread(path, 3)
#BGR转YCbCrimg_ycc = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)img_y = img_ycc[:,:,0]
#Y通道转为[0,1]之间的浮点floatimg = img_y.astype(np.float32) / 255.0LR_input_ = floatimg.reshape(1, floatimg.shape[0], floatimg.shape[1], 1)with tf.Session(config=self.config) as sess:print("\nUpscale image by a factor of {}:\n".format(self.scale))# load and runckpt_name = self.ckpt_path + "fsrcnn_ckpt" + ".meta"saver = tf.train.import_meta_graph(ckpt_name)saver.restore(sess, tf.train.latest_checkpoint(self.ckpt_path))graph_def = sess.graphLR_tensor = graph_def.get_tensor_by_name("IteratorGetNext:0")HR_tensor = graph_def.get_tensor_by_name("NHWC_output:0")
#推理output = sess.run(HR_tensor, feed_dict={LR_tensor: LR_input_})# post-processY = output[0]
#输出数据Y通道乘255.0, clip到[0,255]之间Y = (Y * 255.0).clip(min=0, max=255)Y = (Y).astype(np.uint8)
#Cb,Cr做Bicubic插值放大# Merge with Chrominance channels Cr/CbCr = np.expand_dims(cv2.resize(img_ycc[:,:,1], None, fx=self.scale, fy=self.scale, interpolation=cv2.INTER_CUBIC), axis=2)Cb = np.expand_dims(cv2.resize(img_ycc[:,:,2], None, fx=self.scale, fy=self.scale, interpolation=cv2.INTER_CUBIC), axis=2)
#YCbCr转BGRHR_image = (cv2.cvtColor(np.concatenate((Y, Cr, Cb), axis=2), cv2.COLOR_YCrCb2BGR))bicubic_image = cv2.resize(img, None, fx=self.scale, fy=self.scale, interpolation=cv2.INTER_CUBIC)cv2.imshow('Original image', img)cv2.imshow('HR image', HR_image)cv2.imshow('Bicubic HR image', bicubic_image)cv2.waitKey(0)sess.close()

对于openvino实现来说,所有的超分模型,只要Module Optimizer能正确的转换,那么推理部分基本都没什么问题,需要考虑的就是输入给模型的数据预处理部分,是丢进去[0,1]之间的浮点,还是[-1,1]的浮点,输入数据要不要叠加mean/shift的计算, 这部分预处理可以在MO转IR模型时候通过参数丢给IR模型,让IE去做;以及输出部分的浮点怎么转换到[0,255]之间的RGB/YUV像素,这部分需要自己实现代码手工处理。

 

开始MO转换, 我希望输入图像分辨率大一点,所以定义输入尺寸为640x480, 这样输出的图片尺寸在1280x960. 通过scale_value=[255.0]告诉IE在计算时每个输入数据要除以255.0

C:\temp_20151027\FSRCNN_Tensorflow-master\models>python "c:\Program Files (x86)\IntelSWTools\openvino_2021\deployment_tools\model_optimizer\mo_tf.py" --scale_values=[255.0] --input_shape=[1,480,640,1] --input_model=FSRCNN_x2.pb --data_type FP16 --output=NHWC_output

 

接下来是C++代码的实现,借用了前一篇文章 OpenVINO 2020r3 体验GPU Remote Blob API 里推理的代码,只是在最后处理输出outputblob的地方换成转换像素的代码

 

/*
loadjpg将彩色图像变成灰度图像
static void loadjpg(const char * jpgname, int width, int height)
{//loadimage(&jpg, jpgname);//cv::Mat jpg_2x;jpg = cv::imread(jpgname);cout << "load image: " << jpgname << " resize: w=" << width << " h=" << height << endl;//resize to width*heightstd::cout << "convert img to Gray" << std::endl;cv::cvtColor(jpg, jpg, cv::COLOR_BGR2GRAY);  //COLOR_BGR2YCrCb or COLOR_BGR2YUVcv::resize(jpg, jpg, cv::Size(width, height), 0, 0, cv::INTER_CUBIC);cv::resize(jpg, jpg_2x, cv::Size(width * 2, height * 2), 0, 0, cv::INTER_CUBIC);cv::imshow("bic_2x", jpg_2x);cv::imwrite("palace_gray_bic_2x.png", jpg_2x);
}
*/string FLAGS_d = "GPU"; //"CPU"; 选择用CPU还是GPU推理string FLAGS_m = "C:\\work\\opencl_2020\\cmake_fsrcnn_ov2021\\src\\FSRCNN_x2_FP16.xml";string FLAGS_i = "C:\\work\\opencl_2020\\cmake_fsrcnn_ov2021\\src\\palace.jpg";int FLAGS_nt = 10;cout << "starting" << endl;const Version *IEversion;IEversion = GetInferenceEngineVersion();cout << "InferenceEngine: API version " << IEversion->apiVersion.major << "." << IEversion->apiVersion.minor << endl;cout << "InferenceEngine: Build : " << IEversion->buildNumber << endl << endl;// --------------------------- 1. Load inference engine -------------------------------------cout << "Creating Inference Engine" << endl;Core ie;// -----------------------------------------------------------------------------------------------------// --------------------------- 2. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------cout << "Loading network files" << endl;/** Read network model **/CNNNetwork network = ie.ReadNetwork(FLAGS_m);cout << "network layer count: " << network.layerCount() << endl;// -----------------------------------------------------------------------------------------------------// --------------------------- 3. Configure input & output ---------------------------------------------// --------------------------- Prepare input blobs -----------------------------------------------------cout << "Preparing input blobs" << endl;/** Taking information about all topology inputs **/InputsDataMap inputInfo(network.getInputsInfo());if (inputInfo.size() != 1) throw std::logic_error("Sample supports topologies with 1 input only");auto inputInfoItem = *inputInfo.begin();/** Specifying the precision and layout of input data provided by the user.* This should be called before load of the network to the device **/inputInfoItem.second->setPrecision(Precision::U8);inputInfoItem.second->setLayout(Layout::NCHW);//cout << FLAGS_i << endl;
//loadjpg将RGB图像转换成灰度图像,这样比较简单loadjpg(FLAGS_i.c_str(), inputInfoItem.second->getTensorDesc().getDims()[3],inputInfoItem.second->getTensorDesc().getDims()[2]);if (jpg.data == NULL){cout << "Valid input images were not found!" << endl;}/** Setting batch size to 1 **/network.setBatchSize(1);size_t batchSize = network.getBatchSize();cout << "Batch size is " << std::to_string(batchSize) << endl;// --------------------------- 4. Loading model to the device ------------------------------------------cout << "Loading model to the device: " << FLAGS_d << endl;ExecutableNetwork executable_network = ie.LoadNetwork(network, FLAGS_d);// -----------------------------------------------------------------------------------------------------// --------------------------- 5. Create infer request -------------------------------------------------cout << "Create infer request" << endl;InferRequest inferRequest_regular = executable_network.CreateInferRequest();// -----------------------------------------------------------------------------------------------------// --------------------------- 6. Prepare input --------------------------------------------------------for (auto & item : inputInfo) {Blob::Ptr inputBlob = inferRequest_regular.GetBlob(item.first);SizeVector dims = inputBlob->getTensorDesc().getDims();/** Fill input tensor with images. First b channel, then g and r channels **/size_t num_channels = dims[1];std::cout << "num_channles = " << num_channels << std::endl;size_t image_size = dims[3] * dims[2];MemoryBlob::Ptr minput = as<MemoryBlob>(inputBlob);if (!minput) {cout << "We expect MemoryBlob from inferRequest_regular, but by fact we were not able to cast inputBlob to MemoryBlob" << endl;return 1;}// locked memory holder should be alive all time while access to its buffer happensauto minputHolder = minput->wmap();auto data = minputHolder.as<PrecisionTrait<Precision::U8>::value_type *>();unsigned char* pixels = (unsigned char*)(jpg.data);cout << "image_size = " << image_size << endl;/** Iterate over all pixel in image (b,g,r) **/
//将Mat数据转换给inputBlobfor (size_t pid = 0; pid < image_size; pid++) {/** Iterate over all channels **/for (size_t ch = 0; ch < num_channels; ++ch) {/**          [images stride + channels stride + pixel id ] all in bytes            **/data[ch * image_size + pid] = pixels[pid*num_channels + ch];}}}milliseconds start_ms = duration_cast<milliseconds>(system_clock::now().time_since_epoch());// --------------------------- 7. Do inference ---------------------------------------------------------
#if 0//for async inferencesize_t numIterations = 10;size_t curIteration = 0;std::condition_variable condVar;inferRequest_regular.SetCompletionCallback([&] {curIteration++;cout << "Completed " << curIteration << " async request execution" << endl;if (curIteration < numIterations) {/* here a user can read output containing inference results and put new inputto repeat async request again */inferRequest_regular.StartAsync();}else {/* continue sample execution after last Asynchronous inference request execution */condVar.notify_one();}});/* Start async request for the first time */cout << "Start inference (" << numIterations << " asynchronous executions)" << endl;inferRequest_regular.StartAsync();/* Wait all repetitions of the async request */std::mutex mutex;std::unique_lock<std::mutex> lock(mutex);condVar.wait(lock, [&] { return curIteration == numIterations; });
#else/* Start sync request */cout << "Start inference " << endl;inferRequest_regular.Infer();
#endifmilliseconds end_ms = duration_cast<milliseconds>(system_clock::now().time_since_epoch());std::cout << "total cost time: " << (end_ms - start_ms).count() << " ms" << std::endl;float total_time = (end_ms - start_ms).count() / 1000.0;std::cout << "FPS: " << (float)1.0 / total_time << std::endl;// -----------------------------------------------------------------------------------------------------// --------------------------- 8. Process output -------------------------------------------------------cout << "Processing output blobs" << endl;OutputsDataMap outputInfo(network.getOutputsInfo());cout << "output blob name: " << outputInfo.begin()->first << endl;if (outputInfo.size() != 1) throw std::logic_error("Sample supports topologies with 1 output only");MemoryBlob::CPtr moutput = as<MemoryBlob> (inferRequest_regular.GetBlob(outputInfo.begin()->first));/** Validating -nt value **/const size_t resultsCnt = moutput->size() / batchSize;if (FLAGS_nt > resultsCnt || FLAGS_nt < 1) {cout << "-nt " << FLAGS_nt << " is not available for this network (-nt should be less than " \<< resultsCnt + 1 << " and more than 0)\n            will be used maximal value : " << resultsCnt << endl;FLAGS_nt = resultsCnt;}if (!moutput) {throw std::logic_error("We expect output to be inherited from MemoryBlob, ""but by fact we were not able to cast it to MemoryBlob");}// locked memory holder should be alive all time while access to its buffer happensauto lmoHolder = moutput->rmap();const auto output_data = lmoHolder.as<const PrecisionTrait<Precision::FP32>::value_type *>();size_t num_images = moutput->getTensorDesc().getDims()[0];size_t num_channels = moutput->getTensorDesc().getDims()[1];size_t H = moutput->getTensorDesc().getDims()[2];size_t W = moutput->getTensorDesc().getDims()[3];size_t nPixels = W * H;//处理outputBlob, 将输出浮点数转换成像素std::cout << "Output size [N,C,H,W]: " << num_images << ", " << num_channels << ", " << H << ", " << W << std::endl;{std::vector<float> data_img(nPixels * num_channels);if (num_channels == 1){cv::Mat Img(H, W, CV_8U);unsigned char *image_ptr = Img.data;for (size_t n = 0; n < num_images; n++) {for (size_t i = 0; i < nPixels; i++) {data_img[i ] = static_cast<float>(output_data[i + n * nPixels ])*255.0;//std::cout << "i:" << i << "  data:" << data_img[i] << std::endl;if (data_img[i  ] < 0) data_img[i  ] = 0;if (data_img[i  ] > 255) data_img[i  ] = 255;image_ptr[i] = data_img[i];}}imshow("FSRCNN_2x", Img);cv::imwrite("palace_FSRCNN_gray_2x.png", Img);std::cout << "Output Image created" << std::endl;}

最终得到输出结果

原始图片(测试图片来自网络)

Bicubic的2x放大效果

FSRCNN 2X效果

 

最终调用inferRequest_regular.Infer()推理的时间, 在我的8665U 4核8线程的CPU和 Gen9 24EU的核显上

  • CPU: 68ms (14.71FPS)
  • GPU: 48ms (20.83FPS)

基本上在8代CPU的核显上能到20fps, 如果换到现在主流平台的11代Tigerlake的Gen12 96EU上, 预计性能翻个3倍应该没问题,到时候应该能用FSRCNN来做个老电影AI修复的实时播放器

 

最后源码奉上,仅供参考

https://gitee.com/tisandman/fsrcnn_ov2021

 

这篇关于OpenVINO 2021r2 C++ 超分辨率重建FSRCNN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/301001

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的