基于Udacity模拟器的端到端自动驾驶决策

2023-10-29 08:59

本文主要是介绍基于Udacity模拟器的端到端自动驾驶决策,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 端到端自动驾驶决策

端到端自动驾驶决策的输入为车辆的感知信息,如摄像头信息,输出为车辆的前轮转角和摄像头等信息。
在这里插入图片描述
在这里插入图片描述
如上图所示,为英伟达公司的端到端自动驾驶决策框架,其CNN网络如下图所示,其中包括一个归一化层、5个卷积层和3个完全的全连接层。
在这里插入图片描述

2 Udacity 模拟器介绍

Udacity self-driving-car-sim是Udacity开源的一个汽车模拟器,主要用于自动驾驶模拟仿真实验。模拟器内置车辆,可以感知地图的图像和角度等关键信息。‘驾驶员’可以控制车辆的转向、油门和刹车等信息。模拟器内置两个场景,第一个场景为晴天环形公路简单场景,路面全程平整,无障碍物。第二个场景为盘山公路复杂场景,路面起伏,急弯、干扰路段较多,其中包括阴影、逆光、视线等强干扰信息。
在这里插入图片描述
对于第二个场景,弯道约有40个,其中包括小弯、圆弯等;强干扰部分约10处,包括不平整路面加转弯,下坡路面与远处道路造成的实现干扰等。
在这里插入图片描述

3 训练数据采集

  1. 下载模拟器后点击TRAINING MODE(训练模式)
    在这里插入图片描述

  2. 进入TRAINING MODE后点击右上角的RECORD选择训练数据保存的位置
    在这里插入图片描述

  3. 再次点击RECORD,当其变为RECORDING时,即可手动驾驶车辆,手动驾驶两到三圈,点击右上角的RECORDING,即可采集数据,采集的数据格式如下。
    在这里插入图片描述

4 数据预处理

对原始数据进行分析,其中训练道路包含许多弯道,其中转角信息分布如图所示,近似直线行驶的数据即转角信息在0附近的数据占比远大于其他数据,最终导致模型可能更倾向于直线行驶。
导入数据

# load data csv
import pandas as pd
import matplotlib.pyplot as plt
data_folder = 'data/'
drive_log = pd.read_csv(data_folder + 'driving_log.csv')
drive_log.head()

在这里插入图片描述

查看原有数据转角分布

# plot the distribution
plt.hist(drive_log['steering'], bins=100)
plt.show()

在这里插入图片描述
选取百分之20的转角为0的数据

drive_log = drive_log[drive_log['steering'] != 0].append(drive_log[drive_log['steering'] == 0].sample(frac=0.2))
plt.hist(drive_log['steering'], bins=100)
plt.show()

在这里插入图片描述

在选取百分之20的转向角数据后,根据左右相机头像用于角度校正和数据论证。

import numpy as np
from skimage import io, color, exposure, filters, img_as_ubyte
from skimage.transform import resize
from skimage.util import random_noise
data_folder = ''
def generate_data(line):type2data = {}# center imagecenter_img = io.imread(data_folder + line['center'].strip())center_ang = line['steering']type2data['center'] = (center_img, center_ang)# flip image if steering is not 0if line['steering']:flip_img = center_img[:, ::-1]flip_ang = center_ang * -1type2data['flip'] = (flip_img, flip_ang)# left image left_img = io.imread(data_folder + line['left'].strip())left_ang = center_ang + .2+ .05 * np.random.random()left_ang = min(left_ang, 1)type2data['left_camera'] = (left_img, left_ang)# right imageright_img = io.imread(data_folder + line['right'].strip())right_ang = center_ang - .2 - .05 * np.random.random()right_ang = max(right_ang, -1)type2data['right_camera'] = (right_img, right_ang)# minus brightnessaug_img = color.rgb2hsv(center_img)aug_img[:, :, 2] *= .5 + .4 * np.random.uniform()aug_img = img_as_ubyte(color.hsv2rgb(aug_img))aug_ang = center_angtype2data['minus_brightness'] = (aug_img, aug_ang)# equalize_histaug_img = np.copy(center_img)for channel in range(aug_img.shape[2]):aug_img[:, :, channel] = exposure.equalize_hist(aug_img[:, :, channel]) * 255aug_ang = center_angtype2data['equalize_hist'] = (aug_img, aug_ang)# blur imageblur_img = img_as_ubyte(np.clip(filters.gaussian(center_img, multichannel=True), -1, 1))blur_ang = center_angtype2data['blur'] = (blur_img, blur_ang)# noise imagenoise_img = img_as_ubyte(random_noise(center_img, mode='gaussian'))noise_ang = center_angtype2data['noise'] = (noise_img, noise_ang)# crop all imagesfor name, (img, ang) in type2data.items():img = img[60: -25, ...]type2data[name] = (img, ang)return type2datadef show_data(type2data):col = 4row = 1 + len(type2data) // 4f, axarr = plt.subplots(2, col, figsize=(16, 4))for idx, (name, (img, ang)) in enumerate(type2data.items()):axarr[idx//col, idx%col].set_title('{}:{:f}'.format(name, ang))axarr[idx//col, idx%col].imshow(img)plt.show()type2data = generate_data(drive_log.iloc[0])
show_data(type2data)

在这里插入图片描述
保存训练数据

import warnings
with warnings.catch_warnings():warnings.simplefilter("ignore")X_train, y_train = [], []for idx, row in drive_log.iterrows():type2data = generate_data(row)for img, ang in type2data.values():X_train.append(img)y_train.append(ang)X_train = np.array(X_train)
y_train = np.array(y_train)
np.save('X_train', X_train)
np.save('y_train', y_train)

训练数据分布

plt.hist(y_train, bins=100)
plt.show()

在这里插入图片描述

模型训练

import numpy as npfrom keras.models import Sequential
from keras.layers import Flatten, Dense, Lambda, Dropout, Conv2D# Define model
model = Sequential()
model.add(Lambda(lambda x: x / 255.0 - 0.5, input_shape=(75, 320, 3)))
model.add(Conv2D(24, (5, 5), strides=(2, 2), activation="elu"))
model.add(Conv2D(36, (5, 5), strides=(2, 2), activation="elu"))
model.add(Conv2D(48, (5, 5), strides=(2, 2), activation="elu"))
model.add(Conv2D(64, (3, 3), activation="elu"))
model.add(Conv2D(64, (3, 3), activation="elu"))
model.add(Dropout(0.8))
model.add(Flatten())
model.add(Dense(100))
model.add(Dense(50))
model.add(Dense(10))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')# Train model
X_train = np.load('X_train.npy')
y_train = np.load('y_train.npy')
model.fit(X_train, y_train, epochs=5, validation_split=0.1)# Save model
model.save('model.h5')

在这里插入图片描述

模型测试

import argparse
import base64
from datetime import datetime
import os
import shutilimport numpy as np
import socketio
import eventlet
import eventlet.wsgi
from PIL import Image
from flask import Flask
from io import BytesIOfrom keras.models import load_model
import h5py
from keras import __version__ as keras_versionsio = socketio.Server()
app = Flask(__name__)
model = None
prev_image_array = Noneclass SimplePIController:def __init__(self, Kp, Ki):self.Kp = Kpself.Ki = Kiself.set_point = 0.self.error = 0.self.integral = 0.def set_desired(self, desired):self.set_point = desireddef update(self, measurement):# proportional errorself.error = self.set_point - measurement# integral errorself.integral += self.errorreturn self.Kp * self.error + self.Ki * self.integralcontroller = SimplePIController(0.1, 0.002)
set_speed = 30
controller.set_desired(set_speed)@sio.on('telemetry')
def telemetry(sid, data):if data:# The current steering angle of the carsteering_angle = data["steering_angle"]# The current throttle of the carthrottle = data["throttle"]# The current speed of the carspeed = data["speed"]# The current image from the center camera of the carimgString = data["image"]image = Image.open(BytesIO(base64.b64decode(imgString)))image_array = np.asarray(image)image_array = image_array[60:-25, :, :]steering_angle = float(model.predict(image_array[None, ...], batch_size=1))throttle = controller.update(float(speed))print(steering_angle, throttle)send_control(steering_angle, throttle)# save frameif args.image_folder != '':timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]image_filename = os.path.join(args.image_folder, timestamp)image.save('{}.jpg'.format(image_filename))else:# NOTE: DON'T EDIT THIS.sio.emit('manual', data={}, skip_sid=True)@sio.on('connect')
def connect(sid, environ):print("connect ", sid)send_control(0, 0)def send_control(steering_angle, throttle):sio.emit("steer",data={'steering_angle': steering_angle.__str__(),'throttle': throttle.__str__()},skip_sid=True)if __name__ == '__main__':parser = argparse.ArgumentParser(description='Remote Driving')parser.add_argument('model',type=str,help='Path to model h5 file. Model should be on the same path.')parser.add_argument('image_folder',type=str,nargs='?',default='',help='Path to image folder. This is where the images from the run will be saved.')args = parser.parse_args()# check that model Keras version is same as local Keras versionf = h5py.File(args.model, mode='r')model_version = f.attrs.get('keras_version')keras_version = str(keras_version).encode('utf8')if model_version != keras_version:print('You are using Keras version ', keras_version,', but the model was built using ', model_version)model = load_model(args.model)if args.image_folder != '':print("Creating image folder at {}".format(args.image_folder))if not os.path.exists(args.image_folder):os.makedirs(args.image_folder)else:shutil.rmtree(args.image_folder)os.makedirs(args.image_folder)print("RECORDING THIS RUN ...")else:print("NOT RECORDING THIS RUN ...")# wrap Flask application with engineio's middlewareapp = socketio.Middleware(sio, app)# deploy as an eventlet WSGI servereventlet.wsgi.server(eventlet.listen(('', 4567)), app)

这篇关于基于Udacity模拟器的端到端自动驾驶决策的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/299588

相关文章

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.